K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:A. \({30^ \circ }\).                 B. \({45^ \circ }\).                 C. \({60^ \circ }\).                  D. \({90^ \circ }\).b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:A. 1.                                            B. 2....
Đọc tiếp

Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).

a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:

A. \({30^ \circ }\).                 

B. \({45^ \circ }\).                 

C. \({60^ \circ }\).                  

D. \({90^ \circ }\).

b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:

A. 1.                                            

B. 2.                                            

C. \(\sqrt 2 \).                         

D. \(\frac{1}{{\sqrt 2 }}\).

c) Số đo của góc nhị diện \(\left[ {N,MM',P} \right]\) bằng:

A. \({30^ \circ }\).                 

B. \({45^ \circ }\).                 

C. \({60^ \circ }\).                  

D. \({90^ \circ }\).

d) Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {NQQ'N'} \right)\) bằng:

A. \(a\).                                    

B. \(\frac{a}{{\sqrt 2 }}\).  

C. \(a\sqrt 2 \).                      

D. \(\frac{a}{2}\).

1
22 tháng 8 2023

a) Đáp án:B

b) Đáp án:D

c) Đáp án:B

d) Đáp án:B

14 tháng 6 2017

 Đáp án A

 Giải thích

10 tháng 8 2023

\(\overrightarrow{DM}.\overrightarrow{A'N}=\left(\overrightarrow{DA}+\overrightarrow{AM}\right)\left(\overrightarrow{A'B'}+\overrightarrow{B'N}\right)\)

\(=\overrightarrow{DA}.\overrightarrow{A'B'}+\overrightarrow{AM}.\overrightarrow{A'B'}+\overrightarrow{DA}.\overrightarrow{B'N}+\overrightarrow{AM}.\overrightarrow{B'N}\)

( chứng minh được \(DA\perp A'B',AM\perp B'N\) )

\(=0+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{C'B'}.\left(-\dfrac{1}{2}\overrightarrow{C'B'}\right)+0\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}C'B'^2=0\)

Suy ra \(DM\perp A'N\)

Ý A

Chọn A

16 tháng 5 2019

14 tháng 9 2018

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Góc giữa AB và B’C’ = góc giữa AB và BC (vì B’C’//BC)

⇒ Góc giữa AB và B’C’ =   A B C ^   =   90 o

b) Góc giữa AC và B’C’ = góc giữa AC và BC (vì B’C’//BC)

⇒ Góc giữa AC và B’C’ =   A C B ^   =   45 o

c) Góc giữa A’C’ và B’C = góc giữa AC và B’C (vì A’C’//AC)

ΔACB’ đều vì AC = B’C = AB’ (đường chéo của các hình vuông bằng nhau)

⇒ Góc giữa A’C’ và B’C =   A C B ' ^   =   60 o

9 tháng 8 2017

Chọn đáp án C.

22 tháng 8 2017

Vì CD // C’D’ nên góc  giữa AC và C’D’ bằng góc giữa AC và CD – bằng góc ACD

Vì ABCD là hình vuông nên tam giác ACD vuông cân tại D

⇒ A C D ^ = 45 0

Đáp án B

24 tháng 2 2018

Giải bài tập Toán 11 | Giải Toán lớp 11

a) AD, A’D’, BC, B’C’, AA’, BB’, CC’, DD’

b) BD, B’D’, AA’, BB’, CC’, DD’

25 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có AB = AD = AA′ = a

và C ′ B   =   C ′ D   =   C ′ A ′   =   a 2

Vì hai điểm A và C’ cách đều ba đỉnh của tam giác A’BD nên A và C’ thuộc trục đường tròn ngoại tiếp tam giác BDA’ . Vậy AC′ ⊥ (BDA′). Mặt khác vì mặt phẳng (ACC’A’) chứa đường thẳng AC’ mà AC′ ⊥ (BDA′) nên ta suy ra mặt phẳng (ACC’A’) vuông góc với mặt phẳng (BDA’)

b) Ta có ACC’ là tam giác vuông có cạnh A C   =   a 2 và CC’ = a

 

Vậy A C ′ 2   =   A C 2   +   C C ′ 2  

⇒   A C ′ 2   =   2 a 2   +   a 2   =   3 a 2 .   V ậ y   A C ′   =   a 3 .