Chứng tỏ rằng các số sau là các số vô tỉ
1) 5
2) 3 + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ
Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
Ta có: 2(x + 1) = 3 + 2x ⇔ 2x + 2 = 3 + 2x ⇔ 0x = 1
Vậy phương trình vô nghiệm.
vì tập hợp n có vô hạn phần tử mà sau dấu ,là các số thuộc tập hợp N nên đó là số vô tỉ
Giả sử, a không phải là 1 số vô tỉ. Khi đó a là một số thập phân vô hạn tuần hoàn mà chu kì có n chữ số, số các chữ số đứng trước chu kì bằng k. Xét số N = 10^m với m là 1 số tự nhiên và \(m\ge n+k\). Trong số a, sau dấu phẩy, ta viết kế tiếp nhau các số tự nhiên kể từ 1, do đó số N cũng được viết ở một vị trí nào đó. Vì a là số thập phân vô hạn tuần hoàn và vì m là chữ số 0 đứng cạnh nhau ở vị trí nào đó trong số a \(\left(m\ge n+k\right)\)nên chu kì của số thập phân này chỉ gồm toàn chữ số 0, nghĩa là a là số thập phân hữu hạn. Điều này mâu thuẫn với đề bài. Vì vậy số a không thể là một số thập phân vô hạn tuần hoàn. Nó là một số thập phân vô hạn không tuần hoàn nghĩa là a là một số vô tỉ.
#)Giải :
Giả sử a là số vô tỉ với chu kì = k
Xét A = 10m với m là số tự nhiên
Vì số a sau dấu phẩy là các số tự nhiên liên tiếp viết từ 1
=> Số A cũng sẽ nằm ở một vị trí nào đó
Vì a là lũy thừa của 10m hay m số 0
=> a là số hữu hạn (mâu thuẫn với đề bài)
=> a là số thập phân vô hạn không tuần hoàn hay số vô tỉ (đpcm)
a) Xét 3 t/h của x :
+) Xét n là số lẻ => ( 5n + 7 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
+) Xét n là số chẵn => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
+) Xét n bằng 0 => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
Vậy ta có đpcm
b) C.m tương tự câu a :
+) Với n lẻ thì ko có thừa số nào là số chẵn => ko chia hết cho 2
+) Với n chẵn thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2
+) Với n = 0 thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2
Vậy ta có đpcm
P.s : chỉ cần mỗi t/h đầu là có thể đpcm rồi, nhưng để đầy đủ thì cứ làm cả ra nha
Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$
$\Rightarrow n+2\vdots d, n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.
b.
Gọi $d$ là ƯCLN $(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau