Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Giả sử \(\sqrt{5}\) không phải số vô tỉ
Đặt: \(\sqrt{5}=\frac{m}{n}\) (m,n \(\in\) Z m;n khác 0 và ƯCLN(m;n)=1)
=> \(\left(\sqrt{5}\right)^2=\left(\frac{m}{n}\right)^2\)
=> \(\frac{m^2}{n^2}=5\)
=> m2 = 5n2
=> m2 \(⋮\) 5
=> m \(⋮\) 5
Đặt m = 5k
=> (5k)2 = 5n2
=> 5n2 = 25k2
=> n2 = 5k2
=> n2 \(⋮\) 5
=> n \(⋮\) 5
Mà m \(⋮\) 5 => ƯCLN(m;n) \(\ne\) 1 (trái với gt)
Vậy \(\sqrt{5}\) là số vô tỉ.
Giả sử \(\sqrt{5}\) là số hữu tỉ => \(\sqrt{5}=\frac{m}{n}\left(m;n\in Z;n\ne0\right)\); (|m|; |n|)=1
\(\Rightarrow5=\frac{m^2}{n^2}\)
=> 5.n2 = m2
Giả sử p là ước nguyên tố của n \(\Rightarrow m^2⋮p\)
Mà p nguyên tố nên \(m⋮p\)
Lúc này; (|m|; |n|) = p (khác 1), trái với giả sử
=> \(\sqrt{5}\) là số vô tỉ (điều phải chứng tỏ)
Đặt: \(\sqrt{2}=\frac{m}{n}\)
=> \(\frac{m^2}{n^2}=2\)
=> \(m^2=2n^2\)
=> \(m^2\) chia hết cho \(2\). Mà 2 là số nguyên tố nên => \(m\) chia hét cho 2
Đặt: \(m=2k\)
=> \(\frac{m^2}{n^2}=\frac{4k^2}{n^2}=2\)
=> \(4k^2=2n^2\)
=> \(n^2=2k^2\)
=> \(n^2\) chia hết cho 2. Mà 2 là số nguyên tố nên n chia hết cho 2.
Ta có \(\sqrt{2}=\frac{m}{n}=\frac{2a}{2b}\) không tối giản nên \(\sqrt{2}\) là số vo tỉ.
Các câu sau tương tự
Mình dùng phương pháp phản chứng hơi tắt một tí.
Giả sử \(\sqrt{2}\) là số hữu tỉ thì sẽ có dạng \(\sqrt{2}=\frac{m}{n}\) tối giản.
Mình chứng minh \(\frac{m}{n}\) không tối giản nên \(\sqrt{2}\) là số vô tỉ
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
Giả sử \(\sqrt{3}\)không phải số vô tỉ.
Đặt \(\sqrt{3}=\frac{m}{n}\)( m , n là các số nguyên khác 0 ;\(\frac{m}{n}\)tối giản, hay \(ƯCLN\left(m;n\right)=1\))
\(\Rightarrow\left(\sqrt{3}\right)^2=\left(\frac{m}{n}\right)^2\)
\(\Rightarrow\frac{m^2}{n^2}=3\)
\(\Rightarrow m^2=3n^2\)
\(\Rightarrow m^2\text{⋮}3\)
\(\Rightarrow m\text{⋮}3\)
Đặt \(m=3k\)
\(\Rightarrow\left(3k\right)^2=3n^2\)
\(\Rightarrow3n^2=9k^2\)
\(\Rightarrow n^2=3k^2\)
\(\Rightarrow n^2\text{⋮}3\)
\(\Rightarrow n\text{⋮}3\)
Mà \(m\text{⋮}3\) nên \(ƯCLN\left(m;n\right)\ne1\), trái với điều kiện.
Vậy \(\sqrt{3}\)là số vô tỉ.
Tương tự với \(\sqrt{5}.\)
Bài giải
a, Ta có :
\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ
b, Ta có :
\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ