Cho số tự nhiên ab bằng 3 lần tích các chữ số của nó. CMR
a)CMR b ⁞ a
b)Đặt b = k.a; CMR 10 ⁞ k
c)Tìm số tự nhiên ab ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\overline{ab}=3ab\Rightarrow10a+b=3ab\)
Ta thấy vế phải là số chia hết cho a nên vế trái cũng là số chia hết cho a.
Vế trái là một tổng, có 10a đã chia hết cho a nên b cũng phải chia hết cho a.
b) Giả sử \(b=ka\left(k\in N\right)\)
Khi đó ta có \(10a+ka=3a.ka\Rightarrow10+k=3ka\Rightarrow10=3ka-k\Rightarrow10=k\left(3a-1\right)\)
Vì 10 và k đều là các số tự nhiên nên k là ước của 10 hay \(10⋮k\)
a) theo đề bài \(\overline{ab}=3ab\)
\(\Rightarrow10a+b=3ab\) (1)
\(\Rightarrow10a+b⋮a\)
\(\Rightarrow b⋮a\)
b) do \(b=ka\Rightarrow k< 10\)thay \(b=ka\)vào (1)
\(10a+ka=3a.ka\)
\(\Rightarrow10+k=3ak\) (2)
\(\Rightarrow10+k⋮k\)
\(\Rightarrow10⋮k\)
c) do \(k< 10\Rightarrow k\in\left\{1;2;5\right\}\)
với\(k=1\), thay vào(2) : 11 =3a ,loại
với \(k=2\),thay vào (2) : 12 = 6a=>a=2
\(b=ka=2.2=4\) ta có \(\overline{ab}=24=3.2.4\)
với \(k=5\)thay vào (2) : 15 =15a=>a=1;\(b=ka=5.1=5\)
ta có \(\overline{ab}=15=3.1.5\)
đáp số 24 và 15
a) Theo đề bài : ab = 3ab
\(\Rightarrow\) 10a + b = 3ab
\(\Rightarrow\)10a + b chia hết cho a
\(\Rightarrow\)b chia hết cho a (ĐPCM)