Trong không gian với hệ tọa độ Oxyz cho điểm A (2;1;2) và mặt cầu (S): x2 + y2 + z2 - 2y - 2z - 7 = 0. Mặt phẳng (P) đi qua A và cắt (S) theo thiết diện là đường tròn (C) có diện tích nhỏ nhất. Bán kính đường tròn (C) là: A. 1 B.
5
C. 3 D....
Đọc tiếp
Trong không gian với hệ tọa độ Oxyz cho điểm A (2;1;2) và mặt cầu (S): x2 + y2 + z2 - 2y - 2z - 7 = 0. Mặt phẳng (P) đi qua A và cắt (S) theo thiết diện là đường tròn (C) có diện tích nhỏ nhất. Bán kính đường tròn (C) là:
A. 1
B. 5
C. 3
D. 2
Chọn D
Mặt cầu (S) có tâm I (0;1;1) và bán kính R = 3
Ta có
nên A nằm trong mặt cầu (S)
Đặt h là khoảng cách từ I đến mặt phẳng (P), r là bán kính đường tròn (C)
Khi đó: khi và chỉ khi
Đường tròn (C) có diện tích nhỏ nhất nên r = 2