K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

- Hàm số đã cho xác định trên R.

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

- Vậy với mọi m, hàm số đã cho không liên tục tại x = 3.

Do đó đáp án đúng là A.

6 tháng 12 2016

trả lời nhanh giùm cái

xin m.n đó

22 tháng 6 2019

a) \(f\left(x\right)=5x^3-7x^2+2x+5\)

\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)

\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)

\(\Rightarrow f\left(1\right)=5-7+7\)

\(\Rightarrow f\left(1\right)=5\)

Vậy f(1) = 5.

\(g\left(x\right)=7x^3-7x^2+2x+5\)

\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)

Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)

22 tháng 6 2019

\(h\left(x\right)=2x^3+4x+1\)

\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)

\(\Rightarrow h\left(0\right)=0+0+1\)

\(\Rightarrow h\left(0\right)=1\)

Vậy \(h\left(0\right)=1\)

4 tháng 12 2018

1) Ta có:

\(f\left(1\right)=-1\)

\(\Rightarrow f\left(1\right)=3.1+m=-1\)

\(\Rightarrow3+m=-1\)

\(\Rightarrow m=-1-3=-4\)

Vậy m = -4

2) Ta có:

\(f\left(0\right)=-3\)

\(\Rightarrow f\left(0\right)=a.0+b=-3\)

\(\Rightarrow b=-3\)

Ta lại có:

\(f\left(-1\right)=5\)

\(\Rightarrow f\left(-1\right)=-a+b=5\)

\(\Rightarrow-a-3=5\)

\(\Rightarrow-a=5+3=8\)

\(\Rightarrow a=-8\)

Vậy a = -8 và b = -3

4 tháng 12 2018

GIÚP MK NHANH VS NHA NGÀY KIA NỘP RÙI bucminh

a) \(\) Ta có : \(F\left(x\right)=5x^3-7x^2+x+7\)

\(\Rightarrow F\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7\)

\(=\left(-5\right)-7-1+7\)

\(=-6\)

Vậy : \(F\left(-1\right)=-6\)

b) Ta có : \(K\left(x\right)=F\left(x\right)-G\left(x\right)+H\left(x\right)\)

\(\Leftrightarrow K\left(x\right)=5x^3-7x^2+x+7-\left(7x^3-7x^2+2x+5\right)+\left(2x^3+4x+1\right)\)

\(\Leftrightarrow K\left(x\right)=\left(5x^3-7x^3+2x^3\right)+\left(-7x^2+7x^2\right)+\left(x-2x+4x\right)+\left(7-5+1\right)\)

\(\Leftrightarrow K\left(x\right)=3x+3\)

Vậy : \(K\left(x\right)=3x+3\)

c) Ta có : \(K\left(x\right)=3x+3\)

\(\Rightarrow\) Bậc của \(K\left(x\right)\) là 1.

Xét \(K\left(x\right)=0\Leftrightarrow3x+3=0\)

\(\Leftrightarrow3.\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy : nghiệm của đa thức \(K\left(x\right)\)\(x=-1\)

7 tháng 8 2019

a) \(F\left(x\right)=5x^3-7x^2+x+7\)

=> \(F\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7\)

\(F\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7\)

\(F\left(-1\right)=\left(-13\right)+7\)

\(F\left(-1\right)=-6.\)

Vậy \(F\left(-1\right)=-6.\)

\(G\left(x\right)=7x^3-7x^2+2x+5\)

=> \(G\left(-\frac{1}{2}\right)=7.\left(-\frac{1}{2}\right)^3-7.\left(-\frac{1}{2}\right)^2+2.\left(-\frac{1}{2}\right)+5\)

\(G\left(-\frac{1}{2}\right)=\left(-\frac{7}{8}\right)-\frac{7}{4}+\left(-1\right)+5\)

\(G\left(-\frac{1}{2}\right)=\left(-\frac{29}{8}\right)+5\)

\(G\left(-\frac{1}{2}\right)=\frac{11}{8}.\)

Vậy \(G\left(-\frac{1}{2}\right)=\frac{11}{8}.\)

\(H\left(x\right)=2x^3+4x+1\)

=> \(H\left(0\right)=2.0^3+4.0+1\)

\(H\left(0\right)=0+0+1\)

\(H\left(0\right)=1.\)

Vậy \(H\left(0\right)=1.\)

Chúc bạn học tốt!

7 tháng 12 2019

Bài 1:

\(f\left(x\right)=5x-3.\)

+ \(f\left(x\right)=0\)

\(\Rightarrow5x-3=0\)

\(\Rightarrow5x=0+3\)

\(\Rightarrow5x=3\)

\(\Rightarrow x=3:5\)

\(\Rightarrow x=\frac{3}{5}\)

Vậy \(x=\frac{3}{5}.\)

+ \(f\left(x\right)=1\)

\(\Rightarrow5x-3=1\)

\(\Rightarrow5x=1+3\)

\(\Rightarrow5x=4\)

\(\Rightarrow x=4:5\)

\(\Rightarrow x=\frac{4}{5}\)

Vậy \(x=\frac{4}{5}.\)

+ \(f\left(x\right)=-2010\)

\(\Rightarrow5x-3=-2010\)

\(\Rightarrow5x=\left(-2010\right)+3\)

\(\Rightarrow5x=-2007\)

\(\Rightarrow x=\left(-2007\right):5\)

\(\Rightarrow x=-\frac{2007}{5}\)

Vậy \(x=-\frac{2007}{5}.\)

Làm tương tự với \(f\left(x\right)=2011.\)

Chúc bạn học tốt!

7 tháng 12 2019

Còn 2 bài còn lại đâu anh.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

18 tháng 11 2023

`a)TXĐ: R`

`b)TXĐ: R\\{0}`

`c)TXĐ: R\\{1}`

`d)TXĐ: (-oo;-1)uu(1;+oo)`

`e)TXĐ: (-oo;-1/2)uu(1/2;+oo)`

`f)TXĐ: (-oo;-\sqrt{2})uu(\sqrt{2};+oo)`

`h)TXĐ: (-oo;0) uu(2;+oo)`

`k)TXĐ: R\\{1/2}`

`l)ĐK: {(x^2-1 > 0),(x-2 > 0),(x-1 ne 0):}`

`<=>{([(x > 1),(x < -1):}),(x > 2),(x ne 1):}`

`<=>x > 2`

   `=>TXĐ: (2;+oo)`

18 tháng 11 2023

câu l) $x^2-1 > 0$ thì giải ra 2 nghiệm $x < -1, x > 1$ mới đúng chứ nhỉ?