K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Ta có A= \(\frac{3x-17}{4-x}=\frac{3x-12-5}{4-x}\)\(=\frac{3x-12}{4-x}-\frac{5}{4-x}=-3-\frac{5}{4-x}\)

=>A \(< -3\)

=> Để A đạt Min => \(\frac{5}{4-x}\) phải đạt Max => \(4-x\)phải đạt Min 

có B=4-x \(\le\)4

(lại có đk : 4-x \(\ne\)0=> x\(\ne4;\)/   4-x\(>\)0 ( do nếu 4-x <0 => A>-3 => chắc chắn không đạt Min)và \(x\ge0\)(do nếu x<0  => B>4 ( B không đạt Min)

=> \(0< 4-x\le4\) mà x là giá trị nguyên => B có giá trị nhỏ nhất = 1

=> x=3 

khi x= 3 => A=-8

Sai thì bảo lại mình nhé 

22 tháng 1 2019

Chọn D

Tương tự như trên, áp dụng bất đẳng thức Cauchy ta có

Do đó . Vì vậy, mệnh đề D sai.

7 tháng 11 2017

Ta có

sin 5 x ≤ sin 4 x ⇒ y ≤ sin 4 x + 3 cos x

Áp dụng bất đẳng thức Cauchy ta có:

1 - cos x 1 + cos x 1 + cos x = 1 2 2 - 2 cos x 1 + cos x 1 + cos x

≤ 1 2 2 - 2 cos x + ( 1 + cos x ) 2 3 3 = 32 27 < 3

⇒ 3 - 1 - cos x 1 + cos x 2 > 0 ⇒ 1 - cos x 3 - 1 - cos x 1 + cos x 2 ≥ 0 ⇒ 3 1 - cos x - sin 4 x ≥ 0 ⇔ sin 4 x + 3 cos x ≤ 3

M = maxy = 3 ⇔ cos(x) = 1

⇔ x = k 2 π ,   k ∈ ℤ

Ta lại có

y ≥ - sin 4 x + 3 cos x

Tương tự như trên, áp dụng bất đẳng thức Cauchy ta có:

1 + cos x 1 - cos x 1 - cos x = 1 2 2 + 2 cos x 1 - cos x 2 ≥ 32 27 ≤ 3 ⇒ 3 - 1 + cos x 1 - cos x 2 > 0 ⇒ 1 + cos x 3 - 1 + cos x 1 - cos x 2 ⇔ sin 4 x + 3 cos x ≥ - 3 m = m i n y = - 3 ⇔ cos x = - 1 ⇔ x = k 2 π , k ∈ ℤ

Do đó M m = - 1 . Vì vậy, mệnh đề D sai.

Đáp án cần chọn là D

14 tháng 11 2017

Ta có 

y = sin x = cos 2 x = sin x - 1 - 2 sin 2 x = 2 sin 2 x + sin x - 1

Đặt t = sin(x), - 1 ≤ t ≤ 1

Ta sẽ đi tìm GTLN và GTNN của hàm số y = g t = 2 t 2 + t - 1  trên đoạn [ -1;1 ]

Ta có  g t = - 2 t 3 - t + 1 ,   - 1 ≤ t ≤ 1 2 2 t 3 + t - 1 ,     1 2 ≤ t ≤ 1

* Xét hàm số  h t = - 2 t 3 - t + 1  trên đoạn - 1 ; 1 2

Dễ dàng tìm được 

M a x r ∈ 1 2 ; 1 h t = 9 8 ⇔ t = - 1 4 M i n r ∈ 1 2 ; 1 h t = 0 ⇔ t = 1 2

* Xét hàm số k t = 2 t 3 + t - 1  trên đoạn  1 2 ; 1

Cũng dễ dàng tìm được 

M a x r ∈ 1 2 ; 1 k t = 2 ⇔ t = 1 M i n r ∈ 1 2 ; 1 k t = 0 ⇔ t = 1 2

Qua hai trường hợp trên ta đi đến kết luận

M a x r ∈ - 1 ; 3 g t = 2 ⇔ t = 1 M i n r ∈ - 1 ; 3 g t = 0 ⇔ t = 1 2

Hay 

M = M a x y = 2 ⇔ sin x = - 1 ⇔ x = - π 2 + k 2 π m = Miny = 0 ⇔ sin x = 1 2 ⇔ x = π 6 + k 2 π x = 5 π 6 + k 2 π

Đáp án C

15 tháng 5 2017

TXĐ: D = R\{0}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) = 0 ⇔ x = 3 hoặc x = -3

Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25

Suy ra

min f(x) = f(3) = 6; max f(x) = f(2) = 6,5

17 tháng 5 2023

TXĐ: D = R\{0}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) = 0 ⇔ x = 3 hoặc x = -3

Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25

Suy ra

min f(x) = f(3) = 6; max f(x) = f(2) = 6,5

15 tháng 7 2018

TXĐ: D = R\{0}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) = 0 ⇔ x = 3 hoặc x = -3

Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25

Suy ra

min f(x) = f(3) = 6; max f(x) = f(2) = 6,5