K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

TXĐ: D = R\{0}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) = 0 ⇔ x = 3 hoặc x = -3

Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25

Suy ra

min f(x) = f(3) = 6; max f(x) = f(2) = 6,5

17 tháng 5 2023

TXĐ: D = R\{0}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) = 0 ⇔ x = 3 hoặc x = -3

Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25

Suy ra

min f(x) = f(3) = 6; max f(x) = f(2) = 6,5

15 tháng 7 2018

TXĐ: D = R\{0}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) = 0 ⇔ x = 3 hoặc x = -3

Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25

Suy ra

min f(x) = f(3) = 6; max f(x) = f(2) = 6,5

19 tháng 11 2019

Chọn D.

Xét hàm số hàm số liên tục trên R

Có 

đồng biến trên [2;4]

Nên 

Do đó 

Ta có 

Dấu bằng xảy ra 

Vậy  

22 tháng 2 2018

a) TXĐ: D = R

Sự biến thiên:

y′ = 3 x 2  – 6x = 3x(x – 2)

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (– ∞ ;0), (2;+ ∞ )

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; y C Đ  = y(0) = 0

Hàm số đạt cực tiểu tại x = 2; y C T  = y(2) = -4.

Giới hạn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).

b) x 3  – 3 x 2  – m = 0 ⇔ x 3  – 3 x 2  = m x 3  – 3 x 2  – m = 0 ⇔ x 3  – 3 x 2  = m (∗)

Phương trình (∗) có 3 nghiệm phân biệt khi và chỉ khi đường thẳng y = m cắt (C) tại 3 điểm phân biệt. Từ đó suy ra: – 4 < m < 0.

10 tháng 2 2019

P =  1 + i 3 2  +  1 - i 3 2  = 1 + 2i 3 – 3 + 1 −2i 3  − 3 = −4

17 tháng 5 2023

P = 1 + i 3 2 + 1 - i 3 2 = 1 + 2i 3 – 3 + 1 −2i 3 − 3 = −4

6 tháng 5 2017

P =  ( 1 + i 3 ) 2  +  ( 1 - i 3 ) 2  = 1 + 2i√3 – 3 + 1 −2i√3 − 3 = −4

15 tháng 7 2017

Chọn đáp án B

Có m a x [ - 2 ; 4 ] f x = f - 2 = 7

  m i n [ - 2 ; 4 ] f x = f 4 = - 4

Tổng giá trị lớn nhất và giá trị nhỏ nhất bằng 3

1 tháng 4 2018

Đáp án A

18 tháng 4 2019