Tìm số tự nhiên lớn nhất biết 56 ⋮ x và 128 ⋮x
A. 4
B. 8
C. 16
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2 x . 4 = 128
=> 2 x = 128 : 4
=> 2 x = 32
=> 2 x = 2 5
=> x = 5
Vậy x = 5
b, x 15 = x
=> x = 1 hoặc x = 0
Vì 1 15 = 1 ; 0 15 = 0
c, x - 5 4 = x - 5 6
=> x – 5 = 1 hoặc x – 5 = 0
=> x = 6 hoặc x = 5
Vậy x = 6 hoặc x = 5
d, x 2018 = x 2
=> x = 1 hoặc x = 0
Vì 1 2018 = 1 2 = 1 ; 0 2018 = 0 2 = 0
a: \(\Leftrightarrow x-1\in\left\{-1;1;2;3;6\right\}\)
hay \(x\in\left\{0;2;3;4;7\right\}\)
b: \(\Leftrightarrow x+1\in\left\{1;2;5;10\right\}\)
hay \(x\in\left\{0;1;4;9\right\}\)
c: x=UCLN(64;48;88)=8
g: \(x\in BC\left(12;18\right)\)
mà x<=144
nên \(x\in\left\{0;36;72;108;144\right\}\)
\(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\\ \Rightarrow x=5\left(B\right)\\ B\left(8\right)=\left\{0;8;16;24;32;...\right\}\\ \Rightarrow x=24\left(B\right)\)
Bài 3:
Ta có: \(x⋮126\)
\(x⋮198\)
Do đó: \(x\in BC\left(126;198\right)\)
\(\Leftrightarrow x\in B\left(1386\right)\)
mà x nhỏ nhất
nên x=1386
Bài 1:
Gọi số dư khi chia 346,414,539 cho a là $r$. ĐK: $r< a$
Ta có:
$346-r\vdots a$
$414-r\vdots a$
$539-r\vdots a$
Suy ra:
$539-r-(414-r)\vdots a\Rightarrow 125\vdots a$
$539-r-(346-r)\vdots a\Rightarrow 193\vdots a$
$(414-r)-(346-r)\vdots a\Rightarrow 68\vdots a$
$\Rightarrow a=ƯC(125,193,68)$
$\Rightarrow ƯCLN(125,193,68)\vdots a$
$\Rightarrow 1\vdots a\Rightarrow a=1$
Bài 2:
Vì $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Ta có:
$a+b=16x+16y=128$
$\Rightarrow x+y=8$
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$
$\Rightarrow (a,b)=(16, 112), (48,80), (80,48), (112,16)$
a) 5 6 + 1 6 ≤ x ≤ 13 4 + 14 8 ⇔ 1 ≤ x ≤ 5 ⇒ x ∈ 1 ; 2 ; 3 ; 4 ; 5
b) − 5 6 + 8 3 + 29 − 6 ≤ x ≤ − 1 2 + 2 + 5 2 ⇔ − 3 ≤ x ≤ 4
Vì x là số tự nhiên nên x ∈ 0 ; 1 ; 2 ; 3 ; 4
Đáp án cần chọn là: B