Tìm điểm cực đại của hàm số y = x 4 - 2 x 2 + 5 .
A. x = 1
B. x = 2
C. x = -1
D. x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: C
Ta có y(0) = 2, y(a) = a 4 + 3a x 2 + 2 > 2 với mọi a ≠ 0.
Vậy hàm số có một điểm cực tiểu là x = 0.
Đáp án: C
Ta có y(0) = 2, y(a) = a 4 + 3a x 2 + 2 > 2 với mọi a ≠ 0.
Vậy hàm số có một điểm cực tiểu là x = 0.
Ta có:
\(y'=x^2-2mx+m^2-4\)
\(y''=2x-2m,\forall x\in R\)
Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:
\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)
=> B.
Đáp án: B.
Hàm số y = ( x + 1 ) 3 (5 - x) xác định trên R.
y' = - ( x + 1 ) 3 + 3 ( x + 1 ) 2 (5 - x) = 2 ( x + 1 ) 2 (7 - 2x)
y' = 0 ⇔
Bảng biến thiên
Suy ra hàm số chỉ có một cực trị (là cực đại)
Cách khác: Nhận xét rằng y' chỉ đổi dấu khi x đi qua 7/2 nên hàm số chỉ có một cực trị
Đáp án B
Hàm số y = x + 1 3 (5 - x) xác định trên R.
y' = - x + 1 3 + 3 x + 1 2 (5 - x) = 2 x + 1 2 (7 - 2x)
y' = 0 ⇔
Bảng biến thiên
Suy ra hàm số chỉ có một cực trị (là cực đại)
Cách khác: Nhận xét rằng y' chỉ đổi dấu khi x đi qua 7/2 nên hàm số chỉ có một cực trị
Chọn D