Cho đẳng thức: x 2 − 1 ( x 2 − 2 x + 1 ) = x + 1 ( x 2 − x − 6 ) B với x ≠ − 2 ; 1 ; 3 .
Hãy tìm một cặp đa thức A và B thỏa mãn đẳng thức trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Ta có: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)
c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)
\(=ab+a+ab+b\)
\(=a+b+2ab\)(1)
Thay ab=1 vào biểu thức (1), ta được:
a+b+2(*)
Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)
Thay ab=1 vào biểu thức (2), ta được:
1+a+b+1=a+b+2(**)
Từ (*) và (**) ta được VT=VP(đpcm)
Câu 2:
Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)
\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)
\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)
\(\Leftrightarrow-11x-22=0\)
\(\Leftrightarrow-11x=22\)
hay x=-2
Vậy: x=-2
Theo đề ra :\(x^2+y^2=2\Leftrightarrow x^2+y^2+2xy=2+2xy\Leftrightarrow\left(x+y\right)^2=2+2xy.\)(1)
Khi đó \(\left(x+y\right)\left(x+y+2\right)=\left(x+y\right)^2+2\left(x+y\right)\)
\(=2+2xy+2\left(x+y\right)\)( Thế (1) vô)
\(=2\left(x+y+xy+1\right)\)
\(=2\left[y\left(x+1\right)+\left(x+1\right)\right]\)
\(=2\left(x+1\right)\left(y+1\right)\)
Bạn ơi đề bài sai nha mik sửa lại đề bài
\(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\)
VT = \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^3\right)^2-1=x^6-1\)
VP = \(\left(x^2-1\right)\left(x^2+x+1\right)=\left(x^2\right)^3-1=x^6-1\)
Ta thấy VT = VP
=> \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\) (đpcm)
1. không đáp án đúng
2.\(\dfrac{1}{y-x}\sqrt{2x^2\left(x-y\right)^2}=\dfrac{-1}{x-y}x\left(x-y\right)\sqrt{2}\left(vì>y>0\right)=-x\sqrt{2}\)
\(\left(x+y\right)\left(x+y+2\right)\)
\(=\left(x+y\right)^2+2\left(x+y\right)\)
\(=x^2+y^2+2xy+2\left(x+y\right)\)
\(=2+2xy+2\left(x+y\right)\)
\(=2\left(xy+x+y+1\right)\)
\(=2\left(x+1\right)\left(y+1\right)\)