K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

Chọn A.

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

+) Tam giác SBD có SO là đường trung tuyến; điểm I nằm trên đoạn SO; Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

 nên I là trọng tâm tam giác SBD.

⇒ M là trung điểm SD, N là trung điểm SB.

+) Tam giác SBD có MN là đường trung bình nên MN// BD và 

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

⇒ Nên MNBD là hình thang.

NV
7 tháng 1

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

NV
7 tháng 1

loading...

NV
7 tháng 1

Bài này cũng có thể ứng dụng bài này (vẫn là sử dụng diện tích tam giác):

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Nhưng đặc biệt hơn 1 chút là nó đi qua điểm A luôn (vậy ta có thể coi như (P) cắt SA tại A và áp dụng nó vẫn đúng):

\(\dfrac{SA}{SA}+\dfrac{SC}{SP}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}=\dfrac{2SO}{SI}=8\)

\(\Rightarrow1+\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}=16\)

\(\Rightarrow\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}=15\)

NV
7 tháng 1

Em kiểm tra lại đề, \(\left(\alpha\right)\) đi qua AI nên nó không thể cắt SA tại M được nữa (vì nó đi qua A nên đã cắt SA tại A rồi)

7 tháng 1

Anh ơi, (a) qua điểm I có đúng không ạ anh, vì đề mờ chỗ đấy anh ạ, chắc chỉ qua điểm I thôi ạ 

17 tháng 3 2018

Đáp án B

Ta có: V S . M N P V S . A B C = 2 V S . M N P V S . A B C = S M S A . S N S B . S P S C = 1 3 . S P S C  

Tương tự V S . M P Q V S . A C D = 2 V S . M P Q V S . A B C D = 1 2 . S P S C . S Q S D  

Do đó  2 V S . M N P Q V S . A B C D = 1 3 S P S C + 1 2 . S P S C . S Q S D

Đặt S P S C = x 0 < x ≤ 1 , ta chứng minh được  S A S M + S C S P = S B S N + S D S Q = 2 S O S I

Do đó S D S Q = 1 x + 1 2 ⇒ 2 k = x 1 3 + x x + 2 = 2 3  

Do 0 < x ≤ 1 nên  2 k m ax = f 1 = 2 3 ⇒ k = 1 3 .

5 tháng 4 2017

8 tháng 1 2017

18 tháng 12 2017

Chọn A

Xét một trường hợp đặc biệt của các điểm M, E, F ta tính được T = 1.

26 tháng 9 2017

Với x = S A S A = 1 ; y = S M S B , z = S N S C ; t = S P S D

ta có 1 x + 1 z = 1 y + 1 t  và xét tam giác SAC ta có

Mặt khác ba điểm A, I, N thẳng hang nên

1 4 + 1 4 z = 1 ⇔ z = 1 3

Do đó  1 y + 1 t = 1 1 + 1 1 3 = 4 ⇒ y = t 4 t - 1

Vì vậy

Dấu bằng đạt tại t = 1 2 ; y = 1 2 .  Tức mặt phẳng α đi qua trung điểm các cạnh SB. SD.

Chọn đáp án C.

29 tháng 8 2017