Chứng minh các cặp phân thức sau bằng nhau 3 x 2 - 3 x y 3 ( x - y ) 2 và x x - y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,VP=\dfrac{x^2+4x+3}{x^2+6x+9}=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x+3\right)^2}=\dfrac{x+1}{x+3}=VT\)
Vậy ta có đpcm
b, \(VP=\dfrac{3x\left(x+y\right)^2}{9x^2\left(x+y\right)}=\dfrac{x+y}{3x}=VT\)
Vậy ta có đpcm
a) Ta có: \(\dfrac{x^2+4x+3}{x^2+6x+9}\)
\(=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x+3\right)}\)
\(=\dfrac{x+1}{x+3}\)
b: Ta có: \(\dfrac{3x\left(x+y\right)^2}{9x^2\left(x+y\right)}\)
\(=\dfrac{3x\left(x+y\right)\left(x+y\right)}{3x\cdot3x\cdot\left(x+y\right)}\)
\(=\dfrac{x+y}{3x}\)
4,Gọi ƯC(21n+4;14n+3) là d
Ta có:+>21n+4 chia hết cho d
+>14n+3 chia hết cho d
=>2(21n+4) chia hết cho d
3(14n+3) chia hết cho 3
=>42n+8 chia hết cho d
42n+9 chia hết cho d
=>(42n+9)-(42n+8) chia hết cho d
=> 42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)={1}
Mà hai số có ƯCLN=1 thì nguyên tố cùng nhau
=> 21n+4 /14n+3 là phân số tối giản(đpcm)
Vậy 21n+4/14n+3 là phân số tối giản
\(\left(x-y\right)^3+4y\left(2x^2+y^2\right)=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(\Leftrightarrow\left(-3x^2y+8x^2y\right)+3xy^2+3y^3=\left(3x^2y+2x^2y\right)+3xy^2+3y^2\)
\(\Leftrightarrow5x^2y+3xy^2+3y^2=5x^2y+3xy^2+3y^2\)