Cho hàm số y = x - 3 x - m 2 + 1 (m là tham số; m ≠ ± 2 ). Có bao nhiêu giá trị của tham số m để hình phẳng giới hạn bởi hai trục tọa độ và hai đường tiệm cận của đồ thị hàm số đã cho là một hình vuông.
A. 1
B. 3
C. 2
D. 4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)
\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)
Chọn a
1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)
\(\Delta=2^2-4\left(-m-1\right)=4m+8\)
Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0
=>m<=-2
=>\(m\in\left\{-10;-9;...;-2\right\}\)
=>Có 9 số
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
Câu 2:
Thay x=0 và y=-3 vào (d), ta được:
m+2=-3
hay m=-5
\(y=\left(m-2\right)x+m+3\left(d_1\right);y=-x+2\left(d_2\right);y=2x-1\left(d_3\right)\)
Xét phương trình hoành độ giao điểm A của hai đường \(d_3,d_2\)có:
\(-x+2=2x-1\Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\Rightarrow A\left(1,1\right)\)
Để 3 đường thẳng đồng quy tại A thì tọa độ A thỏa mãn phương trình d1 nên:
\(\left(m-2\right).1+m+3=1\Leftrightarrow2m=1\Leftrightarrow m=\frac{1}{2}\)
1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)
\(\Leftrightarrow x^2-x-m=0\) ( I )
Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)
- Để 2 hàm số cắt nhau tại hai điểm phân biệt
<=> PT ( I ) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow m>-\dfrac{1}{4}\)
2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)
Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)
TH1 : \(x_1-x_2=3\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)
\(\Rightarrow-m=-2\)
\(\Rightarrow m=2\)
TH2 : \(x_1-x_2=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)
\(\Rightarrow-m=-2\)
\(\Rightarrow m=2\)
Vậy m = 2 thỏa mãn yêu cầu đề bài .
\(\left\{{}\begin{matrix}\left(d\right)y=\left(m+2\right)x-m^2\\\left(d'\right)y=x-1\\\left(d''\right)x-2y=3\end{matrix}\right.\)
Ta có: \(y=x-1\)
\(\Rightarrow x-y=1\) (1)
Và: \(x-2y=3\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=1\\x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x+2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\)
Do 3 đường thẳng này đồng quy tại 1 điểm nên:
\(-2=\left(m+2\right)\cdot-1-m^2\)
\(\Leftrightarrow-2=-m-2-m^2\)
\(\Leftrightarrow-\left(m+m^2\right)=0\)
\(\Leftrightarrow-m\left(m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
Vậy: ....