K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

Đáp án D

Xét hàm số  y = x 3 - 3 m x 2 - 2 x - m  trên khoảng (0;1)  y ' = 3 x 2 - 6 m x - 2

Hàm số đã cho liên tục và nghịch biến trên khoảng (0;1) khi và chỉ khi   y ' ≤ 0 , ∀ x ∈ 0 ; 1

Khi đó  3 x 2 - 6 m x - 2 ≤ 0 ; ∀ x ∈ 0 ; 1 ⇔ 6 m ≥ 3 x 2 - 2 x ; ∀ x ∈ 0 ; 1 ⇔ 6 m ≥ m a x 0 ; 1 3 x 2 - 2 x

Xét hàm số f x = 3 x 2 - 2 x  trên [0;1], ta có f ' x = 3 + 2 x 2 > 0 , ∀ x ∈ 0 ; 1  suy ra f(x) là hàm số đồng biến trên [0;1].

Do đó m a x 0 ; 1 f x = f 1 = 1 . Khi đó  6 m ≥ 1 ⇔ m ≥ 1 6 .