K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái

=> VT = VP (đpcm)

NV
24 tháng 12 2022

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y+1+xy\right)^2\) là SCP

24 tháng 12 2022

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)

 = 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)

 =(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)

 =(x+y)2+(xy+1)2+2(x+y)(1+xy)

 =(x+y+xy+1)2

 

16 tháng 8 2021

\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy ) 

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy ) 

\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)

18 tháng 5 2022

\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(x=y\)

18 tháng 5 2022

ta co

vt (x+y)2=x2+y2+2xy

=x2-2xy+y2+4xy≥ 4xy (dpcm)

 

15 tháng 11 2018

bđt <=> x4 + y4 - x3y - xy3 ≥ 0

<=> x(x3 - y3) - y(x3- y3) ≥ 0

<=> x(x - y)(x2 + xy + y2) - y(x - y)(x2 + xy + y2) ≥ 0

<=> (x - y)2(x2 + xy + y2) ≥ 0 (1)

Ta có: (x - y)2 ≥ 0 ∀x, y

x2 + xy + y2 = (x + \(\dfrac{1}{2}\)y)2 + \(\dfrac{3}{4}\)y2 ≥ 0 ∀ x, y

=> (1) luôn đúng

Dấu "=" xảy ra <=> x = y

16 tháng 11 2018

theo bđt cauchy schwars ta có:

\(\left\{{}\begin{matrix}x^4+y^4\ge2x^2y^2\\x^4+x^2y^2\ge2x^3y\\y^4+x^2y^2\ge2xy^3\end{matrix}\right.\)

\(\Leftrightarrow2\left(x^4+y^4\right)+2x^2y^2\ge2\left(xy^3+x^3y\right)+2x^2y^2\)

\(\Leftrightarrow x^4+y^4\ge xy^3+x^3y\)

vậy đpcm

27 tháng 9 2017

Áp dụng BĐT Cô-si, ta có

\(x^2+\frac{y^2}{4}\ge2\sqrt{x^2.\frac{y^2}{4}}=2\left|\frac{xy}{2}\right|\)(1)

Lại có \(\left|\frac{xy}{2}\right|\ge\frac{xy}{2}\)(2)

Từ (1) và (2) \(\Rightarrow x^2+\frac{y^2}{4}\ge xy\)

18 tháng 5 2016

cau 2 , n(2n-3)-2n(n+1)=2n^2-3n-2n^2-2n=-5n

-5chia het cho 5 nen nhan voi moi so nguyen deu chia het cho 5 suy ra n(2n-3)-2n(n+1)chia het cho 5

18 tháng 5 2016

1,a) (x-1)(x^2+x+1)=x^3-1

VT=x3+x2+x-x2-x-1

=(x3-1)+(x2-x2)+(x-x)

=x3-1+0+0

=x3-1=VP (dpcm)

tương tự a

16 tháng 9 2023

khó thế

16 tháng 9 2023

P = x(x - y) - x + y2(x - y) - y2 + 5

P = x - x + y- y2 + 5

P = 5
 

Q = x2(x - y) - x2 + y2(x - y) - y2 + 5(x - y) - 2015

Q = 5 - 2015

Q = -2010