Giải PT
a/ \(2x^2+3x+1=12\)
b/\(3x^2+2x+9=21\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>16-x/4=2x+1/3
<=>3[16-x)=4(2x+1)
<=>48-3x=8x+8
<=>-3x-8x=8-48
<=>-5x=-40
<=>x=8
A 1-2x/4-1<1-6x/8
<=>2(1-2x)-8<1-6x
<=>2-4x-8<1-6x
<=>-4x+6x<1-2+8
<=>2x<7
<=>x<7/2
a) \(\dfrac{x+5}{3\left(x-1\right)}+1=\dfrac{3x+7}{5\left(x-1\right)}\) ( đk: \(x\ne1\))
\(\Leftrightarrow\dfrac{5\left(x+5\right)}{15\left(x-1\right)}+\dfrac{15\left(x-1\right)}{15\left(x-1\right)}=\dfrac{3\left(3x+7\right)}{15\left(x-1\right)}\)
\(\Rightarrow5\left(x+5\right)+15\left(x-1\right)=3\left(3x+7\right)\)
\(\Leftrightarrow5x+25+15x-15=9x+21\)
\(\Leftrightarrow5x+15x-9x=21-25+15\)
\(\Leftrightarrow11x=11\Leftrightarrow x=1\) (loại)
Vậy tập nghiệm: \(S=\varnothing\)
b) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}-\dfrac{8}{x^2+2x-3}=1\) (đk: \(x\ne1,x\ne-3\))
\(\Leftrightarrow\dfrac{\left(3x-1\right)\left(x+3\right)}{x^2+2x-3}-\dfrac{\left(2x+5\right)\left(x-1\right)}{x^2+2x-3}-\dfrac{8}{x^2+2x-3}=\dfrac{x^2+2x-3}{x^2+2x-3}\)
\(\Rightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-8=x^2+2x-3\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5-8=x^2+2x-3\)
\(\Leftrightarrow3x=3\Leftrightarrow x=1\) (loại)
Vậy tập nghiệm: \(S=\varnothing\)
a.
3x – 2 = 2x – 3
⇔ 3x – 2x = -3 + 2
⇔ x = -1.
Vậy phương trình có nghiệm x = -1.
b.
2(x-3)+5x(x-1)=5x^2
<=>2x-6+5x^2-5x=5x^2
<=>2x+5x^2-5x-5x^2=6
<=>-3x=6
<=>x=-2
Vậy nghiệm của pt là x=-2
c: =>\(\dfrac{2x-1}{\left(x+5\right)\left(x-1\right)}+\dfrac{x-2}{\left(x-1\right)\left(x-9\right)}=\dfrac{3x-12}{\left(x-9\right)\left(x+5\right)}\)
=>(2x-1)(x-9)+(x-2)(x+5)=(3x-12)(x-1)
=>2x^2-19x+9+x^2+3x-10=3x^2-15x+12
=>-16x-1=-15x+12
=>-x=13
=>x=-13
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
a) 2x2 + 3x + 1 = 12
<=> 2x2 + 3x - 11 = 0
<=> \(2\left(x^2+\frac{3}{2}x-\frac{11}{2}\right)=0\)
<=> \(x^2+\frac{3}{2}x-\frac{11}{2}=0\)
<=> \(\left(x+\frac{3}{4}\right)^2-\frac{97}{16}=0\)
<=> \(\left(x+\frac{3}{4}+\frac{\sqrt{97}}{4}\right)\left(x+\frac{3}{4}-\frac{\sqrt{97}}{4}\right)=0\)
<=> \(x=\frac{\pm97-3}{4}\)
b) \(3x^2+2x+9=21\)
<=> 3x2 + 2x - 12 = 0
<=> \(x^2+\frac{2}{3}x-4=0\)
<=> \(\left(x-\frac{1}{3}\right)^2-\frac{37}{9}=0\)
<=> \(\left(x-\frac{1-\sqrt{37}}{3}\right)\left(x-\frac{1+\sqrt{37}}{3}\right)=0\)
<=> \(x=\frac{1\pm\sqrt{37}}{3}\)