Cho A = 1 + 2 + 2 2 + ... + 2 2009 + 2 2010 . Tìm số dư khi chia A cho 7.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DP
0
TD
1
HT
0
N
1
17 tháng 5 2015
\(1+2+2^2+...+2^{2009}+2^{2010}\)
\(1+\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
=\(1+2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
=\(1+\left(2+2^4+...+2^{2008}\right)\left(1+2+2^2\right)\)
=\(1+\left(2+2^4+...+2^{2008}\right)7\)
=>\(1+2+2^2+...+2^{2009}+2^{2010}\) chia cho 7 dư 1
LC
28 tháng 10 2015
Ta có: A=20+21+22+23+…+22009+22010
=>A=(20+21+22)+…+(22008+22009+22010)
=>A=(20+21+22)+…+22008.(20+21+22)
=>A=7+…+22008.7
=>A=(1+…+22008).7 chia hết cho 7
=>A chia hết cho 7
=>A chia 7 dư 0
Ta có: A = 1 + 2 + 2 2 + 2 3 + ... + 2 2008 + 2 2009 + 2 2010
= 1 + 2 ( 1 + 2 + 22 ) + ... + 2 2008 ( 1 + 2 + 22 )
= 1 + 2 ( 1 + 2 + 4 ) + ... + 2 2008 ( 1 + 2 + 4 )
= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... + 2 2008 )
Mà 7 ( 2 + ... + 2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.