Bài 7. Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của
các cạnh AB, BC và CA; D, E, F lần lượt là trung điểm các đoạn HA, HB và HC.
Chứng minh rằng các tứ giác MNFD và MEFP là các hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy MN là đường trung bình của tam giác ABC
Do đó MN//AC và MN=1/2.AC
Tương tự: DF là đtb của tam giác AHC. Suy ra DF//AC,DF=1/2.AC
Mặt khác: góc MDH+góc CDH=góc BHC+góc HAC=90^0
Do đó tứ giác MNFD là hcn.
chứng minh tương tự ta cũng sẽ có:MEFP là hcn.
P/s: Do mới xài nên chả biết up cái ảnh ở đâu nên bạn tự vẽ hình nhé
bài 3
Gọi giao điểm của EM với AC là K' ( K' \(\in\)AC )
Ta sẽ chứng minh K' \(\equiv\)K
Thật vậy, gọi giao điểm AC và MN là O ; K'N cắt DC tại I
dễ thấy O là trung điểm MN
do MN // EI \(\Rightarrow\frac{MO}{EC}=\frac{K'O}{K'C}=\frac{ON}{CI}\)\(\Rightarrow EC=CI\)
\(\Delta NEI\)có NC là đường cao vừa là trung tuyến nên cân tại N
\(\Rightarrow\)NC là đường phân giác của \(\widehat{ENI}\)
Mà \(\widehat{K'NE}+\widehat{ENI}=180^o\) có \(NM\perp NC\)nên NM là đường phân giác \(\widehat{K'NE}\)( 1 )
mặt khác : NM là đường phân giác \(\widehat{KNE}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(K'\equiv K\)hay A,K,C thẳng hàng
Trên tia đối tia HC lấy D sao cho HD = HC
Tứ giác DECF có DH = HC ; EH = HF nên là hình bình hành
\(\Rightarrow\)DE // CF
\(\Rightarrow\)DE \(\perp\)CH ; BE \(\perp\)DH
\(\Rightarrow\)E là trực tâm tam giác DBH \(\Rightarrow HE\perp BD\)
Xét \(\Delta DBC\)có DH = HC ; BM = MC nên MH là đường trung bình
\(\Rightarrow\)MH // BD
\(\Rightarrow\)MH \(\perp EF\)
Dễ thấy MN là đường trung bình của tam giác ABC
Do đó MN//AC và MN=1/2.AC
Tương tự: DF là đtb của tam giác AHC. Suy ra DF//AC,DF=1/2.AC
Mặt khác: góc MDH+góc CDH=góc BHC+góc HAC=90^0
Do đó tứ giác MNFD là hcn.
chứng minh tương tự ta cũng sẽ có:MEFP là hcn.