Cho đa giác đều có 14 cạnh. Tính: Số đo một góc của đa giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đo của một góc của đa giác đều n cạnh là
Số đo một góc của đa giác 14 cạnh là
Tổng số đo các góc của đa giác n cạnh là ( n - 2 ) . 180 0 .
Tổng số đo của đa giác 14 cạnh là ( 14 - 2 ) . 180 0 = 2160 0 .
Hướng dẫn:
+ Số đo của một góc của đa giác đều n cạnh là
Khi đó số đo của một góc của đa giác đều 20 cạnh là:
+ Số đường chéo của đa giác n cạnh là
Khi đó số đường chéo của đa giác đều 20 cạnh là
Gọi số cạnh là n
Ta có công thức tính mỗi góc của đa giác đều n cạnh là :
\(\frac{\left(n-2\right).180^0}{n}\)
Đa giác đều có số đường chéo bằng số cạnh
\(\Rightarrow\)Đa giác đều đó là tam giác đều và tổng số đo mỗi góc là \(60^o\)
a) Số đường chéo của đa giác đó :
\(\frac{\left(8-3\right).8}{2}=20\)( đường chéo )
b) Tổng số đo các góc của đa giác là :
\(108.\left(8-2\right)=108.6=1080\)độ
c) Số đo mỗi góc của đa giác đều 8 cạnh :
\(1080:8=135\)độ
Gọi n là số cạnh của đa giác đều cần tìm (n ≥ 3)
Mỗi góc trong của đa giác đều có số đo
( n − 2 ) 180 ° n
Tổng số đo các góc ngoài của một đa giác là 3600
Theo bài ra ta có phương trình:
3600 + ( n − 2 ) 180 ° n = 4680
ó = 4680 - 3600
ó = 1080
ó 1800.n – 3600 = 1080 .n
ó 1800.n – 1080 .n = 3600
ó 720.n = 3600
ó n = 3600: 720
ó n = 5
Vậy đa giác đề cần tìm có 5 cạnh.
Đáp án cần chọn là: A
Gọi n là số cạnh của đa giác đều cần tìm (n ≥ 3)
Mỗi góc của đa giác đều có số đo
( n − 2 ) 180 ° n
Tổng số đo các góc ngoài của một đa giác là 3600
Theo bài ra ta có phương trình:
3600 + ( n − 2 ) 180 ° n = 4800
ó = 4800 - 3600
ó = 1200
ó 1800.n – 3600 = 1200 .n
ó 1800.n – 1200 .n = 3600
ó 600.n = 3600
ó n = 3600: 600
ó n = 6
Vậy đa giác đề cần tìm có 6 cạnh.
Đáp án cần chọn là: C
Số đo của một góc của đa giác đều n cạnh là
Số đo một góc của đa giác 14 cạnh là