Cho tam giác ABC có trung tuyến AM đồng thời là đường phân giác. Trên tia AM lấy điểm D sao cho MD = MA. Chứng minh:
a) AB = CD.
b) tam giác ACD cân tại C.
c) Chứng minh tam giác ABC cân tại A.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
Suy ra: AB=CD
c: Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC
AM là đường phân giác ứng với cạnh BC
Do đó: ΔABC cân tại A
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hình chữ nhật
=>ΔACD vuông tại C
b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có
KC=KA
CD=AB
=>ΔKCD=ΔKAB
=>KD=KB
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
Suy ra: AB=DC
b: Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC
AM là đường phân giác ứng với cạnh BC
Do đó: ΔABC cân tại A
Suy ra: AB=AC
mà AB=CD
nên AC=CD
Xét ΔCAD có CA=CD
nên ΔCAD cân tại C
a) Xét tam giác MAB và tam giác MDC có:
MB=MA(gt) ; góc AMB = góc DMC (đối đỉnh) ;MB=MC (AM là trung tuyến ứng với BC)
-> Tam giác MAB = tam giác MDC (c.g.c)
-> góc CDM = góc BAM
-> CD song song với AB
-> góc DCA + góc BAC =180o (hai góc trong cùng phía)
góc DCA + 900 =180o
-> góc DCA = 90o
Vậy tam giác ACD vuông tại C
Xét tam giác ABC có
AB = AC ( = 5 cm )
=> tam giác ABC cân tại A ( ĐN)
Ta có AM là trung tuyến (gt)
=> AM là đg cao (t/c tam giác cân)
=> AM vuông BC (ĐN)
Ta có M là trung điểm của BC(AM là trung tuyến)
=> BM=CM=1/2 BC=6/2=3cm
Xét tam giác ABM có
AM vuông BC (cmt)
=> tam giác ABM vuông tại M (ĐN)
=> AM2 +BM2 = AB2 (đ/l Pitago)
Thay số: AM2 + 3 = 5
=> AM2= 5-3
=> AM2= 2
=> AM = \(\sqrt{2}\)(cm)
b) tam giác \(ABM\ne DCM\)
c) tam giác ACD ko cân
mk hiện tại không giải cho bạn được vì chuẩn bị thi hsg r bạn