Tìm x
\(2\)/\(x-1\)/ \(+3\sqrt{\left(1-x\right)^2+1}=3-\left(1-x\right)^2\)
giúp mình với nha , làm rõ ra hộ mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{x+3}>2\)
=>x+3>4
=>x>4-3=1
2: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 1\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-1< 0\)
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
3: ĐKXĐ: x>=0
\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-5=\sqrt{x}\left(\sqrt{x}+2\right)-5\)
=>\(x-4\sqrt{x}+3-5=x+2\sqrt{x}-5\)
=>\(x-4\sqrt{x}-2-x-2\sqrt{x}+5=0\)
=>\(-6\sqrt{x}+3=0\)
=>\(-6\sqrt{x}=-3\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4(nhận)
ĐK \(x\ge-\frac{1}{2}\)
Đặt như trên... (\(a\ge\sqrt{\frac{1}{2}};b\ge0\)) ta có hệ:
\(\hept{\begin{cases}2a^2b=a+b^3\\2a^2-b^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(b^2+1\right)b=a+b^3\\2a^2=b^2+1\end{cases}}\)
Xét pt trình đầu của hệ \(\Leftrightarrow a=b\). Thay b bởi a ở pt dưới ta được:
\(2a^2-a^2-1=0\Leftrightarrow\orbr{\begin{cases}a=1\left(TM\right)\\a=-\frac{1}{2}\left(KTM\right)\end{cases}}\). Với a = 1 thì ta có:
\(\sqrt{1+x}=1\Leftrightarrow x=0\) (TM)
Vậy...
Hiển nhiên là cách đầu sai rồi em
Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được
b/=\(\sqrt{x+\left|x-1\right|}-\sqrt{x-\left|x-1\right|}=\sqrt{x}+\left(x-1\right)-\sqrt{x}-\left(x-1\right)\left\{x>1\right\}=\sqrt{x}\left(x-1-x+1\right)\)