K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Chọn A

ĐKXĐ:

và  m2x2 – 2mx+ m2+2≠ 0

+Xét tam thức bậc hai  :

f(x) = 2x2 -2( m+1) x+ m2+1

Ta có  hệ số a= 2> 0;

∆ = (m+1) 2- 2( m2+1) = -(m-1) ≤ 0

Suy ra với mọi m  ta có  f(X) ≥ 0 vớ i mọi m(1)

+ Xét tam thức bậc hai:

g(x) = và  m2x2 – 2mx+ m2+2

Với m= 0  ta có  g(x) = 2> 0

xét với m≠ 0  ta có:

hệ số a= m2> 0

và ∆’ = m2- m2(m2+2) = -m2(m2+1) < 0

Suy ra với mọi m ta có  g(x) > 0 với mọi x(2)

Từ (1) và (2) suy ra với mọi m  thì

và m2x2 – 2mx+ m2+2≠ 0 đúng với mọi giá trị của x

Vậy tập xác định của hàm số là D =  R

Bài 1: 

a: Để hàm số đồng biến khi x>0 thì m-1>0

hay m>1

b: Để hàm số nghịch biến khi x>0 thì 3-m<0

=>m>3

c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0

hay 0<m<1

19 tháng 2 2022

a, đồng biến khi m - 1 > 0 <=> m > 1 

b, nghịch biến khi 3 - m < 0 <=> m > 3 

c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0 

Ta có m - 1 < m 

\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)

a: Để hàm số là hàm số bậc nhất thì m-2>0

hay m>2

b: Để hàm số là hàm số bậc nhất thì \(\left(m-1\right)\left(m+1\right)>0\)

hay \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

a: Để hàm số đồng biến trên R thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số, ta được:

m+3=5

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

bạn ghi lại đề đi bạn

NV
7 tháng 10 2021

- Với \(m=-1\) không thỏa mãn

- Với \(m\ne-1\)

\(y'=3\left(m+1\right)x^2-6x-\left(m+1\right)\)

\(\Delta'=9+3\left(m+1\right)^2>0;\forall m\)

\(\Rightarrow\) Hàm luôn có cực đại, cực tiểu với \(m\ne-1\)

(Không thấy đáp án nào liên quan tới -1 cả)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Để hàm số \(y = m{x^4} + (m + 1){x^2} + x + 3\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m = 0\\m + 1 \ne 0\end{array} \right.\) tức là \(m = 0.\)

Khi đó \(y = {x^2} + x + 3\)

Vây \(m = 0\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + x + 3\)

b) Để hàm số \(y = (m - 2){x^3} + (m - 1){x^2} + 5\) là hàm số bậc hai thì:

\(\left\{ \begin{array}{l}m - 2 = 0\\m - 1 \ne 0\end{array} \right.\) tức là \(m = 2.\)

Khi đó \(y = (2 - 1){x^2} + 5 = {x^2} + 5\)

Vây \(m = 2\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + 5\)