K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

b) Vì AHIO là hình bình hành nên OI = AH = 2OM

Gọi P là trung điểm OC PJ là trung trực OC PJ OC.

Có OM là trung trực BC OM BC. Suy ra

Δ O J P ~ Δ O C M ( g . g ) ⇒ O J O C = O P O M ⇒ O J . O M = O C . O P ⇒ O J .2 O M = O C .2 O P ⇒ O J . O I = O C . O C = R 2

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD vuông góc AB

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC vuông góc CD

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔHDA có

I,O lần lượt là trung điểm của DH,DA

=>IO là đường trung bình

=>IO//AH và IO=AH/2

=>AH=2IO

5 tháng 9 2023

Vẽ hình giúp em với ạ, em cảm ơn nhiều

 

 

25 tháng 2 2018

a, Ta có: BD//CH vì cùng vuông góc với AB; BH//CD vì cùng vuông góc với AC

b, Ta có I là trung điểm của BC => I là trung điểm HD

c, Ta có OI là đường trung bình ∆AHD => AH = 2OI

4 tháng 10 2017

a, BHCK có I là trung điểm hai đường chéo

b, Ta có ∆ABK, ∆ACK vuông tại B và C nên A,B,K,C nằm trên đường tròn đường kính AK

c, Ta có OI là đường trung bình của ∆AHK => OI//AH

d, Gọi AH cắt BC tại M. Ta có BE.BA = BM.BC và CA.CD = CM.BC => ĐPCM

a: góc DMC=góc DBC=90 độ

=>DMBC nội tiếp đường tròn đường kính dC

I là trung điểm của DC

b: góc ANB=1/2*180=90 độ

=>ΔANB vuông tại N

=>góc NAB+góc NBA=90 độ và DM//BN

Gọi K là giao của AC và BD

=>K là trung điểm chung của AC và BD

Xét ΔKDM vuông tại M và ΔKBN vuông tại N có

KD=KB

góc DKM=góc BKN

=>ΔKDM=ΔKBN

=>DM=BN

mà DM//BN

nên DMBN là hình bình hành

=>góc MBD=góc BDN=góc MCD

Xét ΔDAC và ΔNBD có

góc DCA=góc NDB

góc DAC=góc NBD

=>ΔDAC đồng dạng với ΔNBD

=>DC/DN=AC/BD

=>DC*DB=DN*CA

27 tháng 3 2018

a, BH ^ AC và CM ^ AC Þ BH//CM

Tương tự => CH//BM

=> BHCM là hình bình hành

b, Chứng minh BNHC là hình bình hành

=> NH//BC

=> AH ^ NH =>  A H M ^ = 90 0

Mà  A B N ^ = 90 0 => Tứ giác AHBN nội tiếp

c, Tương tự ý b, ta có: BHEC là hình bình hành. Vậy NH và HE//BC => N, H, E thẳng hàng

d,  A B N ^ = 90 0 => AN là đường kính đường tròn ngoại tiếp tứ giác AHBN

AN = AM = 2R, AB = R 3 =>  A m B ⏜ = 120 0

S A O B = 1 2 S A B M = R 2 3 4

S A m B ⏜ = S a t A O B - S A O B = R 2 12 4 π - 3 3

=> S cần tìm =  2 S A m B ⏜ = R 2 6 4 π - 3 3