K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

Đáp án D

Cách giải:

Ta thấy, hai hàm số y = logax, y = logb⁡x đều đồng biến trên (0;+∞) ⇒ a, b > 1

Lấy x0 > 0 bất kì, ta thấy logax0 > logbx0 ⇒ a < b ⇒ 1 < a < b

Hàm số y = cx nghịch biến trên R ⇒ c < 1 ⇒ c < a < b

Hàm số a,b là các hàm số logarit

a: \(log_{\sqrt{3}}x\)

Cơ số là \(\sqrt{3}\)

b: \(log_{2^{-2}}x\)

Cơ số là \(2^{-2}=\dfrac{1}{4}\)

Chọn D

15 tháng 8 2023

Hàm số \(y=log_cx\) nghịch biến

\(\Rightarrow0< c< 1\) và các hàm \(y=log_ax,y=log_bx\) đồng biến nên \(a,b>1\)

Ta chọn \(x=100\Rightarrow log_a>log_b100\Rightarrow a< b\Rightarrow b>a>c\)

\(\Rightarrow B\)

15 tháng 8 2023

B

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Đáp án C.

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

2 tháng 8 2018

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(y' = {\left( {{x^2} - x} \right)^\prime }{.2^x} + \left( {{x^2} - x} \right).{\left( {{2^x}} \right)^\prime } = \left( {2{\rm{x}} - 1} \right){.2^x} + \left( {{x^2} - x} \right){.2^x}.\ln 2\).

b) \(y' = {\left( {{x^2}} \right)^\prime }.{\log _3}x + {x^2}.{\left( {{{\log }_3}x} \right)^\prime } = 2{\rm{x}}.{\log _3}x + {x^2}.\frac{1}{{x\ln 3}} = 2{\rm{x}}.{\log _3}x + \frac{x}{{\ln 3}}\).

c) Đặt \(u = 3{\rm{x}} + 1\) thì \(y = {e^u}\). Ta có: \(u{'_x} = {\left( {3{\rm{x}} + 1} \right)^\prime } = 3\) và \(y{'_u} = {\left( {{e^u}} \right)^\prime } = {e^u}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = {e^u}.3 = 3{{\rm{e}}^{3{\rm{x}} + 1}}\).

Vậy \(y' = 3{{\rm{e}}^{3{\rm{x}} + 1}}\).

16 tháng 12 2018

Đáp án D.

Ta có

Khi đó

Đồng nhất hệ số, ta được

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

2 tháng 1 2019