Cho hàm số y = f(x) có đạo hàm f ' ( x ) = x 2 x - 1 3 ( x + 1 ) . Hỏi hàm số có bao nhiêu điểm cực trị?
A. 1
B. 4
C. 3
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
f ' ( x ) đổi dấu khi x chạy qua -1 và 3 nên hàm số có 2 điểm cực trị.
Đáp án là C
f ' x = 0 ⇔ x x - 1 2 x + 1 = 0 ⇔ x = 0 x = 1 x = - 1
Nhận thấy x=1 là nghiệm bội chẵn nên f’(x) không đổi dấu qua x=1 do đó x=1 không phải là điểm cực trị của hàm số.
Nhận thấy x=0; x=-1 là các nghiệm bội lẻ nên f’(x) sẽ đổi dấu qua x=0; x=-1.
Vậy hàm số có 2 điểm cực trị
Đáp án D.
Ta có thể lập bảng xét dấu của f'(x) tuy nhiên thì ta có thể dùng mẹo như sau. Tại x=0; x=-2 thì y' đổi dấu do có mũ la lẻ còn x=1 thì không đổi dấu do mũ là chẵn. Vì vậy ta có thể có 2 cực trị.
Trong đó ta thấy x=1 là nghiệm bội hai của phương trình ⇒ x=1 không là điểm cực trị của hàm số
Vậy hàm số có 2 điểm cực trị.
Chọn B
Đáp án D
Phương pháp:
Xác định số điểm mà tại đó f'(x) đổi dấu
Cách giải:
tại 2 điểm x = 1, x = -1. Do đó, hàm số có 2 điểm cực trị.