Tìm số tự nhiên nhỏ nhất có 5 chữ số và khi số đó chia cho 8 thì dư 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$
Gọi số tự nhiên nhỏ nhất có 3 chữ số cần tìm là a
Theo bài ra ta có: a chia 11 dư 5 \(\Rightarrow\)a=11m+5
\(\Rightarrow\)a+6=(11m+5)+6=11m+11=11(m+1) chia hết cho 11\(\left(m\in N\right)\)
Vì 77 chia hết cho 11 nên (a+6)+77 chia hết cho 11
=> a+83 chia hết cho 11(1)
a chia 13 dư 8 => a=13n+8
=> a+5=(13n+8)+5=13n+13=13(n+1) chia hết cho 13\(\left(n\in N\right)\)
Vì 78 chia hết cho 13 nên (a+5)+78 chia hết cho 13
=> a+83 chia hết cho 13(2)
Từ (1) và (2) suy ra (a+83) chia hết cho BCNN(11;13) => (a+83) chia hết cho 143
=> a=143k - 43 (k \(\in\)N*)
Để a là số tự nhiên nhỏ nhất có 3 chữ số thì k=2
=> a=143 x 2 - 43 = 203
Gọi số phải tìm là a ( \(100\le a\le999\)
a chia 12 dư 8 nên \(a-8⋮12\Rightarrow a+36-8⋮12\Rightarrow a+28⋮12\)
a chia 20 thiếu 8 nên\(a+8⋮20\Rightarrow a+20+8⋮20\Rightarrow a+28⋮20\)
\(\Rightarrow a+28\in BC\left(12,20\right)=B\left(60\right)=\left\{0;60;120;180....\right\}\)
vì a là số nhỏ nhất có 3 chữ số nên thử lần lượt các giá trị ta có: \(a+28=180\Rightarrow a=152\)
số đó là : 10005
TICK CHO MIK NHA!
You are late !
Một bạn trả lời trước rùi !