Cho tam giác ABC các đg` cao AD,BE,CF cắt nhau tại H.
CM HD+HE+HF<=3r. (r là bk đtnt tam giác ABC).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
Đây là 1 trường hợp của BĐT hình học quan trọng: BĐT Erdos-Mordell
Cách chứng minh bài này y hệt như cách người ta chứng minh BĐT nói trên.
Có khoảng gần 20 cách gì đó, em kiếm trên google thử coi, vì BĐT này quá quen thuộc rồi nên mình sẽ ko chứng minh lại ở đây.
Hơi khó nên tui dung tạm BĐT vậy , bạn thông cảm ^ ^
\(S\left(ABC\right)=AD.\frac{BC}{2}\)
\(S\left(BHC\right)=HD.\frac{BC}{2}\)
\(\Rightarrow\frac{HD}{AD}=\frac{S\left(BHC\right)}{S\left(ABC\right)}\left(1\right)\)
Tương tự:
\(\frac{HE}{BE}=\frac{S\left(AHC\right)}{S\left(ABC\right)}\left(2\right)\)
\(\frac{HF}{CF}=\frac{S\left(AHB\right)}{S\left(ABC\right)}\left(3\right)\)
(1) + (2) +(3) được:
\(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\left[S\left(BHC\right)+S\left(AHC\right)+\frac{S\left(AHB\right)}{S\left(ABC\right)}\right]=\frac{S\left(ABC\right)}{S\left(ABC\right)}=1\)
Áp dụng bất đẳng thức: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)9 ta có:
\(\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)\left(\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\right)\ge9\)
mà: \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\) \(\Rightarrow\left(\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\right)\ge9\)
Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698