Biểu diễn hình học tập nghiệm của các bất phương trình sau: 3 + 2y > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Mở trang Geoebra
Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô
Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).
Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:
x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.
Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y = - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.
Ta vẽ các đường thẳng x – 2y = 0 (d1) ; x + 3y = –2 (d2) ; –x + y = 3 (d3).
Điểm A(–1; 0) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ nên ta gạch đi các nửa mặt phẳng bờ (d1); (d2); (d3) không chứa điểm A.
Miền không bị gạch chéo trong hình vẽ, không tính các đường thẳng là miền nghiệm của hệ bất phương trình đã cho.
Vẽ đường thẳng (d): -3x + 2y = 0
Lấy điểm A(1; 1), ta thấy A ∉(d) và có: -3.1 + 2.1 < 0 nên nửa mặt phẳng bờ (d) không chưá A là miền nghiệm của bất phương trình. (miền hình không bị tô đậm)
x-2y>1
=>-2y>1-x
=>2y<x-1
=>\(y< \dfrac{1}{2}x-\dfrac{1}{2}\)
Trên đường y=1/2x-1/2, ta thấy O(0;0) không thuộc \(y=\dfrac{1}{2}x-\dfrac{1}{2}\)
Thay x=0 vào 1/2x-1/2, ta được:
\(\dfrac{1}{2}\cdot0-\dfrac{1}{2}=-\dfrac{1}{2}< 0\)
Do đó, tập nghiệm của BPT x-2y>1 sẽ là nửa mặt phẳng không chứa biênvà cũng không chứa điểm 0 của đường thẳng x-2y=1
=>
Miền nghiệm là nửa mặt phẳng bờ 2x + y = 1 không chứa O (bỏ bờ).
Điểm O(0;0) có tọa độ thỏa mãn bất phương trình, do đó miền nghiệm là nửa mặt phẳng bờ 3 + 2y = 0 chứa O (bỏ bờ).