Biểu diễn hình học tập nghiệm của các bất phương trình sau: x - 5y < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Mở trang Geoebra
Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô
Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).
Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:
x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.
Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y = - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.
Miền nghiệm là nửa mặt phẳng bờ 2x + y = 1 không chứa O (bỏ bờ).
Điểm O(0;0) có tọa độ thỏa mãn bất phương trình, do đó miền nghiệm là nửa mặt phẳng bờ 3 + 2y = 0 chứa O (bỏ bờ).
Biểu diễn hình học tập nghiệm của bất phương trình bậc nhất hai ẩn sau: -x + 2 + 2(y - 2) < 2(1 - x)
–x + 2 + 2(y – 2) < 2(1 – x)
⇔ –x + 2 + 2y – 4 < 2 – 2x
⇔ x + 2y < 4 (1)
Biểu diễn tập nghiệm trên mặt phẳng tọa độ :
– Vẽ đường thẳng x + 2y = 4.
– Thay tọa độ (0; 0) vào (1) ta được 0 + 0 < 4
⇒ (0; 0) là một nghiệm của bất phương trình.
Vậy miền nghiệm của bất phương trình là nửa mặt phẳng chứa gốc tọa độ không kể bờ với bờ là đường thẳng x + 2y = 4 (miền không bị gạch).
Biểu diễn hình học tập nghiệm của bất phương trình bậc nhất hai ẩn sau: 3(x - 1) + 4(y - 2) < 5x - 3
3(x – 1) + 4(y – 2) < 5x – 3
⇔ 3x – 3 + 4y – 8 < 5x – 3
⇔ -2x + 4y < 8
⇔ x – 2y > –4 ( chia cả hai vế cho -2 < 0) (2)
Biểu diễn tập nghiệm trên mặt phẳng tọa độ:
– Vẽ đường thẳng x – 2y = –4.
– Thay tọa độ (0; 0) vào (2) ta được: 0 + 0 > –4 đúng
⇒ (0; 0) là một nghiệm của bất phương trình.
Vậy miền nghiệm của bất phương trình là nửa mặt phẳng chứa gốc tọa độ không kể bờ với bờ là đường thẳng x – 2y = –4
Miền nghiệm là nửa mặt phẳng bờ -x + 5y = -2 chứa O (bỏ bờ)