K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Chú ý: x 2 − 6 x + 10 = ( x − 3 ) 2 + 1 ≥ 1       ∀ x .

lx+2017l +lx-2l > 0

Xét :

|x+2017| >  2017 với mọi x . Dấu bằng xảy ra khi và chỉ khi x = 0

|x-2| > 2 với mọi x. Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy giá trị lớn nhất của A \(=\frac{1}{2019}\) khi x = 0

\(A=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\)

TH1 : \(x\ge2\)\(\Rightarrow\left|x+2017\right|=x+2017\)

                                \(\left|x-2\right|=x-2\)

\(\Rightarrow A=\frac{1}{2x+2015}\)Do \(x\ge2\Rightarrow2x+2015\ge2019\)

\(\Rightarrow A\le\frac{1}{2019}\)Dấu '' = '' xảy ra khi x = 2

TH2 : \(x\le-2017\)\(\Rightarrow\left|x+2017\right|=-x-2017\)

                                              \(\left|x-2\right|=2-x\)

\(\Rightarrow A=\frac{1}{-2x-2015}\)

\(x\le-2017\Rightarrow-2x\ge4034\)

\(\Rightarrow-2x-2015\ge2019\)

\(\Rightarrow A\le\frac{1}{2019}\). Dấu '' = '' xảy ra \(\Leftrightarrow x=-2017\)

TH3 : \(-2017< x< 2\)\(\Rightarrow\left|x+2017\right|=x+2017\)

                                                       \(\left|x-2\right|=2-x\)

\(\Rightarrow A=\frac{1}{2019}\)

Vậy GTLN của A là \(\frac{1}{2019}\)

Dấu '' = '' xảy ra \(\Leftrightarrow-2017\le x\le2\)

\(\left|x+2017\right|+\left|x-2\right|=\left|x+2017\right|+\left|2-x\right|>=\left|x+2017+2-x\right|=2019\)

=>A=1/|x+2017|+|x-2|<=1/2019

Dấu = xảy ra khi -2017<=x<=2

15 tháng 12 2017

Có : |x+2| >=0 => M =2017-|x+2| < = 2017-0 = 2017

Dấu "=" xảy ra <=> x+2=0 <=> x=-2

Vậy GTLN của M = 2017 <=> x=-2

k mk nha

28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

22 tháng 1 2018

Đáp án: a= 2017