( 1 + 1/1007)×(1+1/1008)×(1+1/1009)×(1+1/1010)×(1+1/1011)×(1+1/1012)
Giải nhanh giúp mình nhé mình đang cần gấp lắm •_•"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{1007}\right)\left(1-\frac{1}{1008}\right)\left(1-\frac{1}{1009}\right)\left(1-\frac{1}{1010}\right)\left(1-\frac{1}{1011}\right)\left(1-\frac{1}{1012}\right)\)
\(=\frac{1006}{1007}\cdot\frac{1007}{1008}\cdot\frac{1008}{1009}\cdot\frac{1009}{1010}\cdot\frac{1010}{1011}\cdot\frac{1011}{1012}\)
\(=\frac{1006\cdot1007\cdot1008\cdot1009\cdot1010\cdot1011}{1007\cdot1008\cdot1009\cdot1010\cdot1011\cdot1012}=\frac{503}{506}\)
=\(\frac{1006}{1007}.\frac{1007}{1008}.....\frac{1011}{1012}\)
=\(\frac{1006}{1012}\)
=\(\frac{503}{506}\)
nếu sai sót mong mọi người sửa lỗi đúng thì ủng hộ
Ta có: \(\left(1-\frac{1}{1007}\right)\times\left(1-\frac{1}{1008}\right)\times...\times\left(1-\frac{1}{1011}\right)\times\left(1-\frac{1}{1012}\right)\)
\(=\frac{1006}{1007}\times\frac{1007}{1008}\times...\times\frac{1010}{1011}\times\frac{1011}{1012}\)
\(=\frac{1006}{1012}=\frac{503}{506}\)
\(\left(1-\frac{1}{1007}\right)\cdot\left(1-\frac{1}{1008}\cdot\right)...\cdot\left(1-\frac{1}{1011}\right)\cdot\left(1-\frac{1}{1012}\right)\)
\(=\frac{1006}{1007}\cdot\frac{1007}{1008}\cdot...\cdot\frac{1010}{1011}\cdot\frac{1011}{1012}\)
\(=\frac{1006.1007\cdot..\cdot2010\cdot2011}{1007\cdot1008\cdot....\cdot1011.1012}\)
\(=\frac{1006}{1012}\)
\(=\frac{503}{506}\)
Ta có :
\(S=\left(1+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}=P\)
\(\Rightarrow\left(s-p\right)^{2013}=0^{2013}=0\)
Ta có : S =\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\)\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)\(-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)
\(\Rightarrow S=P\)
Khi đó : \(\left(S-P\right)^{2018}=0^{2018}=0\)
k chi mik nha!
-.-
Giải:
A=10^11-1/10^12-1
10A=10.(10^11-1)/10^12-1
10A=10^12-10/10^12-1
10A=10^12-1-9/10^12-1
10A=10^12-1/10^12-1 + -9/10^12-1
10A=1+ -9/10^12-1
B=10^10+1/10^11+1
10B=10.(10^10+1)/10^11+1
10B=10^11+10/10^11+1
10B=10^11+1+9/10^11+1
10B=10^11+1/10^11+1 + 9/10^11+1
10B=1 + 9/10^11+1
Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B
=>A < B
Chúc bạn học tốt!