Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(1-\frac{1}{1007}\right)\times\left(1-\frac{1}{1008}\right)\times...\times\left(1-\frac{1}{1011}\right)\times\left(1-\frac{1}{1012}\right)\)
\(=\frac{1006}{1007}\times\frac{1007}{1008}\times...\times\frac{1010}{1011}\times\frac{1011}{1012}\)
\(=\frac{1006}{1012}=\frac{503}{506}\)
\(\left(1-\frac{1}{1007}\right)\cdot\left(1-\frac{1}{1008}\cdot\right)...\cdot\left(1-\frac{1}{1011}\right)\cdot\left(1-\frac{1}{1012}\right)\)
\(=\frac{1006}{1007}\cdot\frac{1007}{1008}\cdot...\cdot\frac{1010}{1011}\cdot\frac{1011}{1012}\)
\(=\frac{1006.1007\cdot..\cdot2010\cdot2011}{1007\cdot1008\cdot....\cdot1011.1012}\)
\(=\frac{1006}{1012}\)
\(=\frac{503}{506}\)
1-1/2+1/3-1/4+1/5-1/6+...+1/2011-1/2012 / 1006-1006/1007-1007/1008-1008/1009-...-2010/2011-2011/2012
Trung bình cộng của các số tự nhiên liên tiếp từ 1 ; 2 ; 3 ; 4 ; 5 ; …2013 là số nào ?
a.1007 b.1008 c.1009 d.1006
A. 1007 nhà bạn nhé !!!
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
1-
Số tự nhiên lẻ nhỏ nhất là 1
Số tự nhiên lẻ lớn nhất những không lớn hơn 2015 là 2015
Khoảng cách giữa hai số lẻ liên tiếp là 2
=> có: ( 2015-1) ; 2 + 1= 1008
2-
Có : ( 2015-0) ; 1 + 1= 2016
\(\left(1-\frac{1}{1007}\right)\left(1-\frac{1}{1008}\right)\left(1-\frac{1}{1009}\right)\left(1-\frac{1}{1010}\right)\left(1-\frac{1}{1011}\right)\left(1-\frac{1}{1012}\right)\)
\(=\frac{1006}{1007}\cdot\frac{1007}{1008}\cdot\frac{1008}{1009}\cdot\frac{1009}{1010}\cdot\frac{1010}{1011}\cdot\frac{1011}{1012}\)
\(=\frac{1006\cdot1007\cdot1008\cdot1009\cdot1010\cdot1011}{1007\cdot1008\cdot1009\cdot1010\cdot1011\cdot1012}=\frac{503}{506}\)
=\(\frac{1006}{1007}.\frac{1007}{1008}.....\frac{1011}{1012}\)
=\(\frac{1006}{1012}\)
=\(\frac{503}{506}\)
nếu sai sót mong mọi người sửa lỗi đúng thì ủng hộ