K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Ta có: 8x + 4 > 2( x +5 )

⇔ 8x + 4 > 2x + 10

⇔ 8x – 2x > 10 - 4

⇔ 6x > 6

⇔ x > 6 : 6

⇔ x > 1

Chọn đáp án D

Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là  A. x = -1          B. x = 0           C. x = 1           D. x = 2  Câu 41Tập nghiệm của phương trình x + 1 = 5 là  A. 4 B. 4 ; - 6. C. -4 ; 6. D.  -6 Câu 42Số đo mỗi góc của lục giác đều là :  A. 1500. B. 1080. C. 1000. D. 1200. Câu 43 Phương trình nào sau đây là phương trình bậc nhất một ẩn ?  A. 0x +  25  = 0. B. x + y =...
Đọc tiếp

Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là

 

 

A. x = -1         

 

B. x = 0          

 

C. x = 1          

 

D. x = 2 

 

Câu 41

Tập nghiệm của phương trình x + 1 = 5 là

 

 

A. 4

 

B. 4 ; - 6.

 

C. -4 ; 6.

 

D.  -6

 

Câu 42

Số đo mỗi góc của lục giác đều là :

 

 

A. 1500.

 

B. 1080.

 

C. 1000.

 

D. 1200.

 

Câu 43

 Phương trình nào sau đây là phương trình bậc nhất một ẩn ?

 

 

A. 0x +  25  = 0.

 

B. x + y = 0.           

 

C.           

 

D. 5x + = 0.

 

Câu 44

Tam giác ABC, có A B = 6 cm, AC =  8cm, BC = 10 cm, đường phân giác AD thì số đo độ dài đoạn BD và CD thứ tự bằng :

 

 

A. 3 ; 7.

 

B. 4 ; 6.

 

C. .

 

D. .

 

Câu 45

Trong các khẳng định sau, khẳng định nào không đúng

 

 

A. Hình hộp chữ nhật là hình lăng trụ đứng.

 

B. Các cạnh bên của hình lăng trụ đứng bằng nhau.

 

C. Hình lăng trụ đứng có đáy là hình bình hành là hình hộp chữ nhật.

 

D. Các mặt bên của hình lăng trụ đứng là hình chữ nhật.

 

Câu 46

Hãy chọn câu đúng.

 

 

A. Phương trình x = 0 và x(x + 1) là hai phương trình tương đương

 

B. kx + 5 = 0 là phương trình bậc nhất một ẩn số

 

C. Trong một phương trình ta có thể chuyển một hạng tử vế này sang vế kia đồng thời đổi dấu của hạng tử đó

 

D. Phương trình x = 2 và |x| = 2 là hai phương trình tương đương

 

Câu 47

Tam giác ABC, có A B = 3 cm, AC =  4cm, đường phân giác AD thì tỉ số hai đoạn BD và CD bằng :

 

 

A. 6.

 

B. 12.

 

C. .

 

D. .

 

Câu 48

 Một hình chữ nhật có chu vi 20 m, nếu tăng chiều dài 2 m và tăng chiều rộng 1 m thì diện tích tăng 16 m2. Chiều dài của hình chữ nhật là:

 

 

A. 8 m.

 

B. 12 m         

 

C. 6 m           

 

D. 4 m         

 

Câu 49

 Số nghiệm của phương trình |2x – 3| - |3x + 2| = 0 là

 

 

A. 3

 

B. 2                

 

C. 0                

 

D. 1                

 

Câu 50

Hình lập phương có diện tích toàn phần bằng 54cm2. Thì thể tích bằng?

 

 

A. 9 cm3.

 

B. 25 cm3.

 

C. 27 cm3.

 

D. 54 cm3.

1
21 tháng 7 2021

(x-2)^2 - x^2 - 8x+3 >= 0

x^2-4x+4 - x^2-8x +3 >=0

7>=12x

x<=12/7

x nguyên lớn nhất là 1

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Tam thức \(f(x) =  - 5{x^2} + x - 1\) có \(\Delta  =  - 19 < 0\), hệ số \(a =  - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta  = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)

Suy ra bất phương trình có nghiệm duy nhất là x = 4

c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta  =  - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.

1 tháng 9 2017

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

a: Ta có: \(8x+11-3=5x+x-3\)

\(\Leftrightarrow8x+8=6x-3\)

\(\Leftrightarrow2x=-11\)

hay \(x=-\dfrac{11}{2}\)

b: Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x\left(x^3+6x^2+12x+8\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^4+12x^3+24x^2+16x-8x^2-2x^3+16=0\)

\(\Leftrightarrow2x^4+10x^3+16x^2+16x+16=0\)

\(\Leftrightarrow2x^4+4x^3+6x^3+12x^2+4x^2+8x+8x+16=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x^3+6x^2+4x+8\right)=0\)

\(\Leftrightarrow x+2=0\)

hay x=-2

c: Ta có: \(\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)

\(\Leftrightarrow2x^2-3x+2x-3-2x^2-10x+x+5=0\)

\(\Leftrightarrow-10x+2=0\)

\(\Leftrightarrow-10x=-2\)

hay \(x=\dfrac{1}{5}\)

d: Ta có: \(\dfrac{1}{10}-2\cdot\left(\dfrac{1}{2}t-\dfrac{1}{10}\right)=2\left(t-\dfrac{5}{2}\right)-\dfrac{7}{10}\)

\(\Leftrightarrow\dfrac{1}{10}-t+\dfrac{1}{5}=2t-5-\dfrac{7}{10}\)

\(\Leftrightarrow-t-2t=-\dfrac{57}{10}-\dfrac{3}{10}=-6\)

hay t=2