Cho x 0 là giá trị lớn nhất thỏa mãn 4 x 4 – 100 x 2 = 0 . Chọn câu đúng.
A. x 0 < 2
B. x 0 < 0
C. x 0 > 3
D. 1 < x 0 < 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy có 3 số nguyên t/m
4x^2 + 4x + y^2 - 12=0
<=> 4x^2 +4x +1 +y^2 -13=0
<=> (2x +1)^2 x + y^2=13 (1)
Vì x; y là số nguyên => (2x +1)^2 ; y^2 là 1 số chính phương
Mà 13=2^2 +3^2
Từ (1) => (2x + 1)^2=2 ^2 ; y^2=3^2 hoặc (2x +1)^2=3^2 ; y^2=2^2
.............
(Tự làm nốt bằng cách tìm ra x; y cụ thể rồi thay vào)
\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$
$\Rightarrow H\leq \frac{z(4-z)^2}{4}$
Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$
$4-z\leq 2$ do $z\geq 2$
$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$
Hay $H\leq 2$
Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
câu 1 dễ bn tự làm nhé
câu 2 nhận xét (x-2)^2 >=0
=> 15-(x2)^2 >= 15
dấu = xảy ra khi và chỉ khi
x-2 = 0
=> x= 2
câu 3 x-5 <0
=> x < 5 (1)
3-x <0
=> x>3 (2)
từ (1) và (2) => 3< x< 5
=> x= 4
câu 1: x=1
câu 2: vì \(^{\left(x-2\right)^2}\)\(\ge\)0
=> 15-\(\left(x-2\right)^2\)\(\le\)0
Dấu "=" xảy ra <=> x-2=0
<=> x=2
Câu 3: x-5 < 0 => x<5
và 3-x >0 =>x>3
=> 3<x<5
Ta có
4 x 4 – 100 x 2 = 0 ⇔ 4 x 2 . x 2 – 100 x 2 = 0 ⇔ 4 x 2 ( x 2 – 25 ) = 0
ó 4 x 2 = 0 x 2 - 25 = 0
ó x 2 = 0 x 2 = 25
ó x = 0 x = 5 x = - 5
Do đó x 0 = 5 => x 0 > 3
Đáp án cần chọn là: C