K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

8 x (256 - 124) = 8 x 132

                        = 1056

Kết quả bằng 1056

21 tháng 9 2021

Bài 2:

a) \(A=x^2+6\ge6>0\forall x\in R\)

b) \(B=\left(5-x\right)\left(x+8\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)

 

22 tháng 11 2015

a) 1240

b) 124

c) 0

a: 3x=2y

nên x/2=y/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x-y}{2-3}=\dfrac{1}{-1}=-1\)

Do đó: x=-2; y=-3

\(A=\left(-2\right)^3+12\cdot\left(-2\right)^2\cdot\left(-3\right)+48\cdot\left(-2\right)\cdot\left(-3\right)^2-64\cdot\left(-3\right)^3\)

\(=-8+12\cdot4\cdot\left(-3\right)-96\cdot9-64\cdot\left(-27\right)\)

\(=712\)

b: 6a=5b

nên a/5=b/6

Đặt a/5=b/6=k

=>a=5k; b=6k

\(B=\dfrac{2a-3b}{3b-2a}=-1\)

d: \(\left|x-2\right|+\left(y-1\right)^2=0\)

=>x-2=0 và y-1=0

=>x=2 và y=1

\(D=\left|2-2\right|+\dfrac{2-1}{2-1}=0+1=1\)

a.\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2}{3}...\frac{2014}{2015}=\frac{1.2.3...2014}{2.3...2015}=\frac{1}{2015}\)

b.\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{128}-\frac{1}{256}=1-\frac{1}{256}=\frac{255}{256}\)

c.\(\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+...+\frac{5}{256}=5\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)=5.\frac{255}{256}=\frac{1275}{256}\)

d.14,35+(13,7-13,6).1=14,35+0,1.1=14,35+0,1=14,45

4 tháng 4 2017

a.1/2015

Bài 4:

a: xy=-2

=>\(x\cdot y=1\cdot\left(-2\right)=\left(-2\right)\cdot1=\left(-1\right)\cdot2=2\cdot\left(-1\right)\)

=>\(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)

b: \(\left(x-1\right)\left(y+2\right)=-3\)

=>\(\left(x-1\right)\cdot\left(y+2\right)=1\cdot\left(-3\right)=\left(-3\right)\cdot1=-1\cdot3=3\cdot\left(-1\right)\)

=>\(\left(x-1;y+2\right)\in\left\{\left(1;-3\right);\left(-3;1\right);\left(-1;3\right);\left(3;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;-5\right);\left(-2;-1\right);\left(0;1\right);\left(4;-3\right)\right\}\)

Bài 3:

a: \(x\left(x+9\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x+9=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)

b: \(\left(x-5\right)^2=9\)

=>\(\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=3+5=8\\x=-3+5=2\end{matrix}\right.\)

c: \(\left(7-x\right)^2=-64\)

mà \(\left(7-x\right)^2>=0\forall x\)

nên \(x\in\varnothing\)

Bài 2:

a: \(\left(-31\right)\cdot x=-93\)

=>\(31\cdot x=93\)

=>\(x=\dfrac{93}{31}=3\)

b: \(\left(-4\right)\cdot x=-20\)

=>\(4\cdot x=20\)

=>\(x=\dfrac{20}{4}=5\)

c: \(5x+1=-4\)

=>\(5x=-4-1=-5\)

=>\(x=-\dfrac{5}{5}=-1\)

d: \(-12x+1=-4\)

=>\(-12x=-4-1=-5\)

=>\(12x=5\)

=>\(x=\dfrac{5}{12}\)

\(a,A=5x^2a-10xya+5y^2a\)

\(=5a\left(x^2-2xy+y^2\right)\)

\(=5a\left(x-y\right)^2\)

Thay x = 124; y=24;a=2 ta có 

\(5.2\left(124-24\right)^2=10.100^2=100000\)

\(b,B=2x^2+2y^2-x^2z+z-y^2z-2\)

\(=2\left(x^2+y^2-1\right)-z\left(x^2+y^2-1\right)\)

\(=\left(x^2+y^2-1\right)\left(2-z\right)\)

Thay x = 1 ; y = 1; z= -1 ta có 

\(\left(1^2+1^2-1\right)\left(2-\left(-1\right)\right)=\left(1+1-1\right)\left(2+1\right)=1.3=3\)

\(c,C=x^2-y^2+2y-1\)

\(=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)

Thay x = 75; y = 26 ta có 

\(\left(75-26+1\right)\left(75+26-1\right)=50.100=5000\)