K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Đáp án B

Điểm M ∈ C ⇒ M a ; 2 a + 1 a + 1 ⇒ y ' a = 1 a + 1 2

và  y a = 2 a + 1 a + 1 .

Suy ra phương trình tiếp tuyến của ( C) tại M là

y = 2 a + 1 a + 1 = 1 a + 1 2 x − a ⇔ y = x a + 1 2 + 2 a 2 + 2 a + 1 a + 1 2    d .

Đường thẳng ( d ) cắt tiệm cận đứng tại

A − 1 ; 2 a a + 1 ⇒ I A = 2 a + 1 .

Đường thẳng ( d ) cắt tiệm cận ngang tại

B 2 a + 1 ; 2 ⇒ I B = 2 a + 1 .

Suy ra I A . I B = 4  và tam giác IAB vuông tại I

⇒ S Δ I A B = 1 2 . I A . I B = 2

Mà  S Δ I A B = I A + I B + I C 2   x   r ⇒ r m ax

khi và chỉ khi  I A + I B + I C min

Ta có

I A + I B + I C = I A + I B + I A 2 + I B 2 ≥ 2 I A . I B + 2 I A . I B = 4 + 4 2 .

Dấu “=” xảy ra

⇔ 2 a + 1 = 2 a + 1 ⇔ a + 1 2 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1.

15 tháng 7 2019

Chọn: D

Đồ thị (C) nhận I (2;1) làm tâm đối xứng

18 tháng 12 2017

+ Hàm số đã cho có TCĐ là x=1 và TCN là y= 1 nên tâm đối xứng- là giao điểm của 2 đường tiệm cận có tọa độ là I (1; 1)

+ Ta có 

Gọi 

+ Phương trình tiếp tuyến tại M  có dạng

+

+ Dấu " = " xảy ra khi và chỉ khi

 

Tung độ này gần với giá trị  nhất trong các đáp án.

Chọn D.

8 tháng 9 2018

Đáp án là D

19 tháng 11 2019

Đáp án B

Tâm đối xứng của đồ thị (C) là giao điểm hai đường tiệm cận. (C) có tiệm cận đứng là x=-1, tiệm cận ngang là y=2 => I(-1;2) 

Ta có: y ' = 1 x + 1 2 ⇒  PTTT tại điểm M a ; b  là y = 1 a + 1 2 x − a + 2 a + 1 a + 1 . Từ đây ta xác định được giao điểm của PTTT tại M a ; b  và hai tiệm cận x = − 1 , y = 2  là A − 1 ; 2 a a + 1 , B 2 a + 1 ; 2 .

Độ dài các cạnh của Δ I A B  như sau

  I A = 2 a a + 1 − 2 = 2 a + 1 I B = 2 a + 1 + 1 = 2 a + 1 A B = 2 1 a + 1 2 + a + 1 2 ⇒ S I A B = 1 2 I A . I B = 2 ;

P = I A + I B + A B 2 = 1 a + 1 + a + 1 + 1 a + 1 2 + a + 1 2

Áp dụng bất đẳng thức Cosi ta có p ≥ 2 + 2  đạt được ⇔ a + 1 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1

1 tháng 3 2017

Đáp án là D           

Tiệm cận đứng của đồ thị là x= -1.

Tiệm cận ngang của đồ thị là y = 4.

=> Tâm đối xứng của đồ thị hàm số

y = 1 + 4 x 1 + x  là I(-1;4).

 Nhận xét: đồ thị hàm số y = a x + b c x + d  có tâm đối xứng là giao điểm hai đường tiệm cận đứng và tiệm cận ngang.

31 tháng 12 2017

Tiệm cận đứng là đường thẳng x = 3.

Tiệm cận ngang là đường thẳng y = 1.

Do đó, giao điểm của hai đường tiệm cận là I(3; 1). Thực hiện phép biến đổi:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta được

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì Y = 5/X là hàm số lẻ nên đồ thị (C) của hàm số này có tâm đối xứng là gốc tọa độ I của hệ tọa độ IXY.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập giá trị của hàm số\(y = \sin x\) là \(\left[ { - 1;1} \right]\)

b) Đồ thị hàm số \(y = \sin x\) nhận O là tâm đối xứng.

Như vậy hàm số \(y = \sin x\) là hàm số lẻ.

c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)

Như vậy, hàm số \(y = \sin x\) có tuần hoàn .

d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Tập giá trị của hàm số \(y = \cot x\)là R

b)     Gốc tọa độ là tâm đối xứng của đồ thị hàm số

Hàm số \(y = \cot x\)là hàm số lẻ

c)     Bằng cách dịch chuyển đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) song song với trục hoành sang phải theo đoạn có độ dài \(\pi \), ta nhận được \(y = \cot x\) trên khoảng \(\left( {\pi ;2\pi } \right)\)

Hàm số \(y = \cot x\) có tuần hoàn

d)     Hàm số \(y = \cot x\)nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right),k \in Z\)