Đáy của một hình chóp là hình vuông có diện tích bằng 4. Các mặt bên của nó là những tam giác đều. Thể tích của khối chóp là:
A. 4 2 3
B. 2 3 3
C. 3 2 3
D. 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: V S . A B C = 1 3 S A . S A B C = 1 3 . 4 . 2 = 8 3 .
Chọn D.
Ta có: SA=SB=AB=a 3
Gọi H là trung điểm của AB.
Do (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD). Khi đó SH= 3 a 2
Diện tích đáy S A B C D = 3 a 2
Vậy thể tích khối chóp
V
S
.
A
B
C
D
=
1
3
S
H
.
S
A
B
C
D
=
3
a
2
2
Tam giác SBC cân hay đều em nhỉ?
Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)
Đáp án C
Cạnh đáy của hình chóp bằng 2 và diện tích một mặt bên bằng nên 2 2 3 4 = 3 nên S t p = 4 + 4 3
Đáp án C
Gọi H là trung điểm của AB. Do ∆ SAB đều nên SH ⊥ AB và
Mà (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD).
Từ
Ta có
Lại có
* Phương án A:
* Phương án B:
* Phương án C:
* Phương án D:
Đáp án C
Gọi H là trung điểm của AB. Do ∆ S A B đều nên S H ⊥ A B và S H = A B 3 2 = 2 3 .
Mà S A B ⊥ ( A B C D ) nên S H ⊥ ( A B C D ) .
Từ d S , A B C D d M , A B C D = S D M D = 2 ⇒ d M ; ( A B C D ) = d S ; A B C D 2 = S H 2 = 3 .
Ta có S ∆ P C N = 1 2 P C . P N = 1 2 . B C 2 . C D 2 = 1 2 . 4 2 . 4 2 = 2 (đvdt).
→ V M . P C N = 1 3 . d M ; ( A B C D ) . S ∆ P C N = 1 3 . 3 . 2 = 2 3 3 (đvdt) .
→ y = 2 3 3
Lại có S A B P N = S A B C D - S ∆ P C N = 4 2 - 1 2 . 2 . 2 - 1 2 . 4 . 2 = 10 (đvdt)
V S . A B P N = 1 3 . S H . S A B P N = 1 3 . 2 3 . 10 = 20 3 3 (đvdt) .
* Phương án A:
x 2 + 2 x y - y 2 = 20 3 3 2 + 2 . 20 3 3 . 20 3 3 - 2 3 3 2 = 476 3 < 160
* Phương án B:
x 2 - 2 x y + 2 y 2 = 20 3 3 2 - 2 . 20 3 3 . 20 3 3 + 2 2 3 3 2 = 328 3 > 109
* Phương án C:
x 2 + x y - y 4 = 20 3 3 2 + 20 3 3 . 20 3 3 - 2 3 3 4 = 1304 9 < 145
* Phương án D:
x 2 - x y + y 4 = 20 3 3 2 - 20 3 3 . 20 3 3 + 2 3 3 4 = 1096 9 < 125