Cho hàm số y = f(x) liên tục trên R và có bảng xét dấu của đạo hàm như sau
Có bao nhiêu giá trị nguyên của tham số m để hàm số g (x) = f (x + m) đồng biến trên khoảng (0; 2).
A. 3
B. 4
C. 2
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt g ( x ) = log 2 ( f ( 2 x ) ) ,
ta có g ' ( x ) = 2 f ' ( 2 x ) f ( 2 x ) ln 2
Theo giả thiết, ta có f ( 2 x ) > 0 , ∀ x ∈ ℝ
Do đó
g ' ( x ) ≥ 0 ⇔ f ' ( 2 x ) ≥ 0 ⇔ [ - 1 ≤ 2 x ≤ 1 2 x ≥ 2 ⇔ [ - 1 2 ≤ x ≤ 1 2 x ≥ 1
(dấu bằng xảy ra tại hữu hạn điểm). Suy ra hàm số y=g(x) đồng biến trên các khoảng - 1 2 ; 1 2 và 1 ; + ∞ . Chọn A.
Chọn đáp án A.
Vì hàm số xác định trên cả R và y' đổi dấu khi đi qua các điểm -2;-1;1;2 do đó hàm số có 4 điểm cực trị.
Chọn đáp án B.