K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Biến đổi vế trái:

Để học tốt Toán 9 | Giải bài tập Toán 9

 

23 tháng 5 2021

a) -17√3/3                                                  b) 11√6 

c) 21                                                            d) 11

29 tháng 5 2021

a)  a) Biến đổi vế trái thành 326+236426326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (6x+136x+6x):6x(6x+136x+6x):6x và làm tiếp

11 tháng 11 2021

Bài 1: 

c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

30 tháng 6 2017

Bạn xem lại đề nhé . Đề sai rồi 

30 tháng 6 2017

đề đúng mà

27 tháng 12 2017

bạn giải ra chưa vậy, mk giúp cho

27 tháng 12 2017

Bạn làm giùm mình nha! Cảm ơn bạn!

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

23 tháng 3 2016

i don't know

23 tháng 3 2016

bó tay! cậu thử hỏi anh chị đi nhé

8 tháng 10 2016

a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)

\(=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)

Vậy đẳng thức trên đc chứng minh

b) Biến đổi vế trái ta có:

\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)

\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\frac{1}{\sqrt{6x}}\)

\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x}\cdot\frac{1}{\sqrt{6x}}\)

\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)

Vậy đẳng thức trên đc chứng minh

 

14 tháng 10 2018

1 ) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

2 ) \(x^2+3x+3=x^2+3x+\dfrac{9}{4}+\dfrac{3}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

3 ) \(x^2+y^2+2\left(x-2y\right)+6\)

\(=x^2+y^2+2x-4y+6\)

\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)

14 tháng 10 2018

1) x2 +x+1

= (x2 +2.x.1/2 +1/4) +3/4

= (x+1/2)2+3/4 \(\ge\dfrac{3}{4}\forall x\in R\left(Vì:\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\in R\right)\)

2) x2 + 3x+3

= (x2 +2.x.3/2 + 9/4)+ 3/4

= ( x+ 3/2)2 + 3/4 \(\ge\dfrac{3}{4}\forall x\in R\left(Vì:\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\in R\right)\)

a: \(VT=\dfrac{3\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}-\dfrac{4\sqrt{6}}{2}\)

\(=\dfrac{-\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}=\dfrac{-3\sqrt{6}+4\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)

b: \(VT=\dfrac{\left(\sqrt{6x}+\dfrac{\sqrt{6x}}{3}+\sqrt{6x}\right)}{\sqrt{6x}}\)

\(=1+\dfrac{1}{3}+1=2\dfrac{1}{3}\)