K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

15 tháng 3 2020

x^5- 1/ x-1= x^4+ x^3+ x^2+ x+ 1 

<=> x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)

<=> x^5 - 1 = x^5 + x^4 + x^3  + x^2 + x - x^4 - x^3 - x^2 - x - 1

<=> x^5 - 1 = x^5 - 1 (đúng)

=> đpcm

23 tháng 6 2023

Viết lại cho vui ạ:))
\(\dfrac{x^5-1}{x-1}=x^4+x^3++x^2+x+1\\ \Leftrightarrow x^5-1=\left(x-1\right)\left(x^4+x^3+x+1\right)\\ \Leftrightarrow x^5-1=x^5+x^4+x^3+x^2+x-x^4-x^3-x^2-x-1\\ \Leftrightarrow x^5-1=x^5-1\left(đpcm\right)\)

                             

5 tháng 12 2021

\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)

1 tháng 9 2020

a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)

\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)

\(=9x^2-4-9x^2-6x-1+6x+3\)

\(=-2\) không phụ thuộc vào x

b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)

\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)

\(=x^2-1-x^2+4x-4-4x-12\)

\(=-17\)không phụ thuộc vào x.

NV
23 tháng 1 2021

BĐT này sai nha bạn.

Nó chỉ đúng khi \(x>0\)

23 tháng 1 2021

Thế bn giải giúp mk ik Nguyễn Việt Lâm Giáo viên

23 tháng 3 2022

\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\) 

\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)

18 tháng 7 2022

a) \sin ^{4} x+\cos ^{4} x=\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} xsin4x+cos4x=sin4x+cos4x+2sin2xcos2x2sin2xcos2x
\begin{aligned}&=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x \\&=1-2 \sin ^{2} x \cos ^{2} x\end{aligned}=(sin2x+cos2x)22sin2xcos2x=12sin2xcos2x

b) \dfrac{1+\cot x}{1-\cot x}=\dfrac{1+\dfrac{1}{\tan x}}{1-\dfrac{1}{\tan x}}=\dfrac{\dfrac{\tan x+1}{\tan x}}{\dfrac{\tan x-1}{\tan x}}=\dfrac{\tan x+1}{\tan x-1}1cotx1+cotx=1tanx11+tanx1=tanxtanx1tanxtanx+1=tanx1tanx+1

c) \dfrac{\cos x+\sin x}{\cos ^{3} x}=\dfrac{1}{\cos ^{2} x}+\dfrac{\sin x}{\cos ^{3} x}=\tan ^{2} x+1+\tan x\left(\tan ^{2} x+1\right)cos3xcosx+sinx=cos2x1+cos3xsinx=tan2x+1+tanx(tan2x+1)
=\tan ^{3} x+\tan ^{2} x+\tan x+1=tan3x+tan2x+tanx+1

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...

23 tháng 1 2021

\(\dfrac{x^2+1}{x}=\dfrac{x^2}{x}+\dfrac{1}{x}=x+\dfrac{1}{x}\)

Theo bất đẳng thức Cô - si, ta có:

\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\sqrt{1}=2\)

Vậy \(\dfrac{x^2+1}{x}\ge2\)

 

23 tháng 1 2021

1 cách chứng minh khác (chứng minh tương đương)

\(\dfrac{x^2+1}{x}\ge2\\ \Leftrightarrow x^2+1\ge2x\\ \Leftrightarrow x^2-2x+1=\left(x-1\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy BĐT ban đầu được chứng minh

11 tháng 11 2021

Bài 1: 

c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

26 tháng 8 2019