K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)

\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)

\(=9x^2-4-9x^2-6x-1+6x+3\)

\(=-2\) không phụ thuộc vào x

b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)

\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)

\(=x^2-1-x^2+4x-4-4x-12\)

\(=-17\)không phụ thuộc vào x.

15 tháng 7 2021

A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )

B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )

C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )

D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )

7 tháng 7 2016

a, tính cụ thể ra ta có : 6X2 -2X-6X2-6X-3+8X= -3

b, tương tự câu trên ta có X-1/5 -1/3 X-2+2 - 2/3 X= -1/5

7 tháng 7 2016

a,2x.(3x-1)-6x.(x+1)-(3-8x)

= 6x^2 - 2x - 6x^2 - 6x - 3 +8x

= -3

Vậy giá trị của đa thức trên không phụ thuộc biến x.
b,0,2.(5x-1) - 1/2.(2/3x+4) + 2/3.(3-x)

= x - 0,2 - 1/3x - 2 + 2 -2/3x

= -0,2

Vậy giá trị của biểu thức trên không phụ thuộc biến x

5 tháng 7 2017

a) 5x^2-(2x+1)(x-2)-x(3x+3)+7
= 5x^2-2x^2+4x-x+2-3x^2-3x+7
= 9
Suy ra  5x^2-(2x+1)(x-2)-x(3x+3)+7 ko phụ thuộc vào giá trị của biến x
b) (3x-1)(2x+3)-(x-5)(6x-1)-38x
= 6x^2+9x-2x-3-6x^2+x+30x-5-38x
=-8
Suy ra (3x-1)(2x+3)-(x-5)(6x-1)-38x ko phụ thuộc vào giá trị biến của x
c) (5x-2)(x+1)-(x-3)(5x+1)-17(x-2)
= 5x^2+5x-2x-2-5x^2-x-15x-3-17x+2
= -3
Suy ra (5x-2)(x+1)-(x-3)(5x+1)-17(x-2) ko phụ thuộc vào giá trị của biến x
d) (4x-5)(x+2)-(x+5)(x-3)-3x^2-x
= 4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x
=5
Suy ra  (4x-5)(x+2)-(x+5)(x-3)-3x^2-x ko phụ thuộc vào giá trị của biến x
k mik nha 
Chúc bạn học giỏi 

5 tháng 7 2017

a) =5x2-2x2+3x+2-3x2-3x+7

    =2+7=9

19 tháng 8 2019

Lời giải :

1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

19 tháng 8 2019

Lời giải :

2. \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy...

19 tháng 8 2019

1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)

\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

2) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)

\(A=8\)

Vậy: biểu thức không phụ thuộc vào biến

19 tháng 8 2019

1) \(\left(x+5\right)^3-x^3-125\)

\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)

\(=15x^2+75x\)

2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)

\(\Leftrightarrow24x+10=0\)

\(\Leftrightarrow24x=0-10\)

\(\Leftrightarrow24x=-10\)

\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)

\(\Rightarrow x=-\frac{5}{12}\)

3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)

\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)

\(=0\)

Vậy: biểu thức không phụ thuộc vào biến