Hai đường phân giác AA1 và BB1 của tam giác ABC cắt nhau tại M. Hãy tìm các góc ACM, BCM nếu ∠(AMB) = 136o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).
Suy ra: ∠C = 180º – (∠A + ∠B)
Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.
Ta có ½. (∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 111o = 69o.
Suy ra ∠A + ∠B = 138o
Suy ra ∠C = 180o – (∠A + ∠B) = 180o − 138o = 42o.
Vì CM là tia phân giác của góc ACB nên: ∠(ACM) = ∠(BCM) = 420 : 2 = 21o.
b,
Trong \(\Delta\) AMB có:
\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)
\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)
Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)
=> \(\widehat{BAC}+\widehat{ABC}=88^0\)
Trong \(\Delta ABC\) có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ACB}=92^0\)
Ta lại có: hai đường phân giác \(\text{AA}_1\) và \(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác
=> CM là phân của của \(\widehat{C}\)
=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)
b,
Tương tự câu a, ta tìm được:
\(\widehat{ACM}=\widehat{BCM}=21^0\)
Toán lớp 7 nhé , nhầm :v
Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C
\(a,\frac{1}{2}(\widehat{A}+\widehat{B})=\widehat{MAB}+\widehat{MBA}=180^0-\widehat{AMB}=180^0-136^0=44^0\)
\(\Rightarrow\widehat{A}+\widehat{B}=2\cdot44^0=88^0\Rightarrow\widehat{C}=180^0-88^0=92^0\)
Vậy : \(\widehat{ACM}=\widehat{BCM}=92^0:2=46^0\)
Câu b ai làm đúng thì mk k 1 cái thôi
a, Xét \(\Delta AMB\)có
\(\widehat{MAB}+\widehat{MBA}=180^0-\widehat{AMB}\)
<=>\(\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}=44^0\)=>\(\widehat{A}+\widehat{B}=88^0\)
=>\(\widehat{C}=180^0-88^0=92^0\)
=>\(\widehat{ACM}=\widehat{BCM}=46^0\)
b, tương tự
Gọi giao điểm của CM và AB là C1. Ta cần chứng minh CC1 ⊥ AB và C1 là trung điểm của đoạn thẳng AB. Vì trong một tam giác ba đường cao đồng quy nên CM hay CC1 vuông góc với AB.
+) Do tam giác ABC cân tại C có CM là đường cao nên CM đồng thời là đường trung trực của đoạn thẳng AB ( tính chất tam giác cân).
a)Xét tam giác ABD và tam giác BE
\(\widehat{ADE=}\widehat{AEC=}90^o\)
AB =AC tam giác chung
Vậy A chung ss...
=>Tam giác AD =A vuông tại E(cạnh huyền góc nhọn)
Vậy đường thẳng trên khác biệc mỗi 90*
b) Phân tích tam giác ABM
Ta có ABM gọi chung là H
Vậy thì trong đoạn trên H:
\(\widehat{HAB}=\widehat{HAC}\)(vuông tại A)
Vuông tại AC=AB (tam gs cân tại AB
Tam giác AHB =AHC (cân tại A)
=> Tam giác ABC =AHC (c.g.c)
Vậy : AMB = ACM
c)
Không ghi lại phần trình bày tất cả :
\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
tam giác ABC cân tại A
\(=>AMB=\frac{180-\widehat{A}}{4}\)(gấp đôi 1 phần)
_Đi qua đi lại xin 1 k thoi nha :>_
a, Có : ^BCK = ^BAK ( chắn cung BK )
^BAK = ^BCH (Phụ ^ABC)
=> ^HCA1 = ^A1CK
=> CA1 là phân giác ^HCK
Tam giác HCK có CA1 vừa là đường cao vừa là phân giác
=> \(\Delta\)HCK cân tại C
=> CA1 là trung tuyến
=> A1 là trung điểm HK
b,\(\frac{HA}{AA_1}+\frac{HB}{BB_1}+\frac{HC}{CC_1}=1-\frac{HA_1}{AA_1}+1-\frac{HB_1}{BB_1}+1-\frac{HC_1}{CC_1}\)
\(=3-\frac{S_{BHC}}{S_{ABC}}-\frac{S_{AHC}}{S_{ABC}}-\frac{S_{AHB}}{S_{ABC}}\)
\(=3-1\)
\(=2\)
c,D \(OM\perp BC\)tại M nên M là trung điểm BC
Xét \(\Delta\)BB1C vuông tại B1 có B1M là trung tuyến
=> B1M = MB = MC
=> ^MBB1 = ^MB1B
và ^MB1C = ^MCB1
Mà ^B1AE = ^B1BC (Chắn cung EC)
^MB1C = ^AB1N (đối đỉnh)
^BB1M + ^CB1M = 90o
=> ^NAB1 + ^NB1A = 90o
=> \(B_1N\perp AE\)
Theo hệ thức lượng trong tam giác vuông có:
\(AB_1^2=AN.AE\)
\(EB_1^2=EN.EA\)
\(\Rightarrow\frac{AB_1^2}{EB_1^2}=\frac{AN.AE}{EN.EA}=\frac{AN}{EN}\)
Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).
Suy ra: ∠C = 180º – (∠A + ∠B)
Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.
1/2(∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 136o = 44o
Suy ra ∠A + ∠B = 2.44o = 88o
∠C = 180o − 88o = 92o
Vậy ∠(ACM) = ∠(BCM) = 92o : 2o = 46o