K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

7 tháng 5 2019
 

a)

Gọi d là Ư CLN (12n+1 ; 30n+2)

12n+1  d và 30n+2 d

(5*12)n+5 d và (2*30)n+4 d

60n+5 d và 60n+4 d

 Suy ra: (60n+5 - 60n+4) d

                     1              d

d=1     ƯCLN(12n+1;30n+2)=d=1          đpcm

b) 

Gọi ƯCLN(14n+17;21n+25) là d

14n+17d và 21n+25d

 3·14n+3·17d và 2·21n+2·25d

42n+51d và 42n+50d

(42n+51 - 42n+50) d

d

d=1   

Vậy ƯCLN(14n+17;21n+25)=d=1

đpcm

 
7 tháng 5 2019

a Ta có : A là p/số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\){1; -1}

Gọi d là ƯCLN(12n + 1; 30n + 2)

=> 12n + 1 \(⋮\)d      => 5(12n + 1) \(⋮\)d     => \(60n+5⋮d\)

    30n + 2 \(⋮\)d       => 2(30n + 2) \(⋮\)d     => \(60n+4⋮d\)

=> (60n + 5) - (60n + 4) = 1  \(⋮\)\(\in\){1; -1}

Vậy A là p/số tối giản

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

1 tháng 3 2017

Gọi ƯCLN(12n + 1,30n + 2) là d 

Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d

           30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d

=> 60n + 5 - (60n + 4) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d => d = 1

=> ƯCLN(12n + 1,30n + 2) = 1

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản  

Gọi \(d\inƯC\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)

19 tháng 3 2021

Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)

⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d

⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d

⇔1⋮d⇔1⋮d

⇔d∈Ư(1)⇔d∈Ư(1)

⇔d∈{1;−1}⇔d∈{1;−1}

⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1

vậy A=12n+130n+2A=12n+130n+2 là phân số tối giản

29 tháng 3 2021

Ta chứng minh phân số này có tử và mẫu là  hai số nguyên tố cùng nhau .

 Gọi d  là ước chung của 12n+130n+2

Ta có :

5(12n+1)-2(30n+2)=1⋮d

 Vậy d=1  nên 12n+1 nguyên tố cùng nhau.

⇒ 12n+130n+2 là phân số tối giản

\(A=\frac{12n+1}{30n+2}\)

Gọi \(d\inƯC\left(12n+1,30n+2\right)\)

Ta có :

\(5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Leftrightarrow60n+5-60n+4⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

19 tháng 3 2023

1Đặt UCLN(\(2n^2\) + n + 1;n) = d

=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d

=> (2n + 1) n ⋮ d

<=>\(2n^2\)  + n ⋮ d

<=>(2n+ n + 1) - (2n2 + n) ⋮ d

<=> 1⋮d

=> d ϵƯ(1)=1

=>UCLN(\(2n^2\) + n + 1;n) =1

=>dpcm

 

19 tháng 3 2023

hum biết nhe

khó qué

tui mới L4 

HIHI