Không cần vẽ hình, hãy cho biết số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao:
2 y = - 3 x 3 y = 2 x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (d): y = -2x + 3 có a = -2; b = 3
(d’) : y = 3x – 1 có a’ = 3 ; b’ = -1.
Có a ≠ a’ ⇒ (d) cắt (d’)
⇒ Hệ có nghiệm duy nhất.
Xét (d): có a = ; b = 3
(d’): có a’ = ; b’ = 1.
Có a = a’; b ≠ b’ ⇒ (d) // (d’)
⇒ Hệ phương trình vô nghiệm
Ta có:
Ta có: a = a’=3; b = b’ = -3
Nhận thấy hai đường thẳng trên trùng nhau
⇒ Hệ phương trình có vô số nghiệm.
Kiến thức áp dụng
a) Xét (d): y = -2x + 3 có a = -2; b = 3
(d’) : y = 3x – 1 có a’ = 3 ; b’ = -1.
Có a ≠ a’ ⇒ (d) cắt (d’)
⇒ Hệ có nghiệm duy nhất.
b)
Xét (d): có a = ; b = 3
(d’): có a’ = ; b’ = 1.
Có a = a’; b ≠ b’ ⇒ (d) // (d’)
⇒ Hệ phương trình vô nghiệm.
c) Ta có:
Xét (d): y = x có a = ; b = 0
(d’) : y = x có a’ = ; b’ = 0
Ta có: a ≠ a’ ⇒ (d) cắt (d’)
⇒ Hệ có nghiệm duy nhất.
d) Ta có:
Ta có: a = a’=3; b = b’ = -3
Nhận thấy hai đường thẳng trên trùng nhau
⇒ Hệ phương trình có vô số nghiệm.
Kiến thức áp dụng
+ Xét hệ (I):
Gọi (d): ax + by = c và (d’): a’x + b’y = c’.
Số nghiệm của hệ (I) phụ thuộc vào vị trí tương đối của (d) và (d’).
(d) cắt (d’) ⇒ hệ (I) có nghiệm duy nhất.
(d) // (d’) ⇒ hệ (I) vô nghiệm
(d) ≡ (d’) ⇒ hệ (I) có vô số nghiệm.
+ Cho đường thẳng (d): y = ax + b và (d’): y = a’x + b’.
(d) cắt (d’) ⇔ a ≠ a’
(d) // (d’) ⇔ a = a’ và b ≠ b’
(d) trùng (d’) ⇔ a = a’ và b = b’.
cắt nhau vì chúng có hệ số góc khác nhau.
Vậy hệ phương trình có một nghiệm duy nhất.
Vì hai đường thẳng có hệ số góc đều bằng 3 nhưng tung độ gốc khác nhau (-1 ≠ - 5/2 ) nên chúng song song với nhau.
Vậy hệ phương trình vô nghiệm.
Vì đường thẳng x = - 5/3 song song với trục tung còn đường thẳng y = - 1 5 x - 4 5 cắt hai trục tọa độ nên chúng cắt nhau.Vậy hệ phương trình có một nghiệm duy nhất.
Vì đường thẳng y = 3 song song với trục hoành còn đường thẳng y = - 23 8 x + 25 4 cắt hai trục tọa độ nên chúng cắt nhau.
Vậy hệ phương trình có một nghiệm duy nhất.
Khi a và c trái dấu thì ac < 0, suy ra –ac > 0, suy ra -4ac > 0
Ta có: ∆ = b 2 – 4ac, trong đó b 2 > 0
Nếu -4ac > 0 thì ∆ luôn lớn hơn 0.
Khi ∆ > 0 nghĩa là phương trình có hai nghiệm phân biệt.
Áp dụng :
Phương trình 3 2 x 2 + 3 - 2 x + 2 - 3 = 0 có:
a = 3 2 , c = 2 - 3 nên ac < 0 (vì 2 < 3 )
Vậy phương trình có 2 nghiệm phân biệt.
Ta có:
Xét (d): y = x có a = ; b = 0
(d’) : y = x có a’ = ; b’ = 0
Ta có: a ≠ a’ ⇒ (d) cắt (d’)
⇒ Hệ có nghiệm duy nhất.