K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

a chia 12 dư 2 nên a = 12k + 2

b chia 9 dư 1 nên b = 9t + 1

Ta có: a + b = 12k + 2 + 9t + 1 = 12k + 9t + 3 chia hết cho 3

29 tháng 12 2016

1. Tính tổng:

 Số số hạng có trong tổng là:

 (999-1):1+1=999 (số)

Số cặp có là:

 999:2=499 (cặp) và dư một số đó là số 500

Bạn hãy gộp số đầu và số cuối:

 (999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400

Vậy tổng S1 = 50400

Mih sẽ giải tiếp nha

29 tháng 12 2016

Số tự nhiên a sẽ chia hết cho 4 vì:

 36+12=48 sẽ chia hết co 4

Số a ko chia hết cho 9 vì:

 4+8=12 ko chia hết cho 9

17 tháng 1 2019

Ta có:

a)  ( 3 n   + 1 ) 2  - 25 = 3(3n - 4)(n + 2) chia hết cho 3;

b)  ( 4 n   + 1 ) 2  - 9 = 8(2n - 1)(n +1) chia hết cho 8.

V
16 tháng 12 2018

số a là chẵn

10 tháng 8 2017

a)gọi 3 STN liên tiếp là n,n+1,n+2

Ta có : n + n+1+n+2=3n+3 chia hết cho 3

Câu b làm tương tự nha bạn . Còn bài b ngày mai mk làm cho

10 tháng 7 2015

a chia 18 dư 12 => a = 18k+12. Ta có:

18k chia hết cho 6 (Vì 18 chia hết cho 6)

12 chia hết cho 6

=> 18k+12 chia hết cho 6

=> a chia hết cho 6(đpcm)

18k chia hết cho 9 (Vì 18 chia hết cho 9)

12 chia 9 dư 3

=> 18k+12 chia 9 dư 3 

=> 18k+12 không chia hết cho 9

=> a không chia hết cho 9(đpcm)

=> 

22 tháng 10 2021

Bài 5: 

Ta có: \(3n+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

22 tháng 10 2021

cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.

 

3 tháng 10 2016

1) Mik lấy VD luôn:

VD: số 51, 51 chia hết cho 3, 51 ko chia hết cho 6.

2) 

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.