Tính giá trị biểu thức S = cos 2 13 ° + cos 2 32 ° + cos 2 58 ° + cos 2 77 ° .
A. S = 1
B. S = 2
C. S = 3
D. S = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(sin^2*+cos^2*=1\)
=> \(sin^2*=1-cos^2*\)
=>\(sin^2*=1- 1/3\)
=>\(sin^2*=2/3\)
thay vào P ta được:
P=3. 2/3 + (1/3)^2
=2+ 1/9
=19/9
\(A=2sinx\left(cosx+cos3x+cos5x\right)\)
\(=2sinx.cosx+2sinx.cos3x+2sinx.cos5x\)
\(=sin2x+sin4x-sin2x+sin6x-sin4x\)
\(=sin6x\)
Áp dụng ta có: \(cosx+cos3x+cos5x=\frac{sin6x}{sinx}\)
\(\Rightarrow T=\frac{sin\left(\frac{6\pi}{7}\right)}{sin\left(\frac{\pi}{7}\right)}=\frac{sin\left(\pi-\frac{\pi}{7}\right)}{sin\left(\frac{\pi}{7}\right)}=\frac{sin\left(\frac{\pi}{7}\right)}{sin\left(\frac{\pi}{7}\right)}=1\)
Ta có:
\(\Delta AIK\sim\Delta ABC\left(g.g\right)\Rightarrow\frac{S_{AIK}}{S_{ABC}}=\left(\frac{AI}{AB}\right)^2=c\text{os}^2A\).
Tương tự: \(\frac{S_{BHK}}{S_{ABC}}=c\text{os}^2B;\frac{S_{CIH}}{S_{ABC}}=c\text{os}^2C\).
Do đó: \(\frac{S_{HIK}}{S_{ABC}}=1-c\text{os}^2A-c\text{os}^2B-c\text{os}^2C\Rightarrow...\Rightarrow\text{đ}pcm\)
S = cos 2 13 ° + cos 2 32 ° + cos 2 58 ° + cos 2 77 ° = cos 2 13 ° + cos 2 32 ° + cos 2 ( 90 - 32 ) ° + cos 2 ( 90 - 13 ) ° = c o s 2 13 ° + cos 2 32 ° + sin 2 32 ° + sin 2 13 ° = 2
Chọn B.