Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội q ≠ 0. Mệnh đề nào sau đây là đúng?
A. 1 a 2 = 1 b c .
B. 1 b 2 = 1 a c .
C. 1 c 2 = 1 b a .
D. 1 a + 1 b = 2 c .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Giả sử ba số hạng a, b, c lập thành cấp số cộng thỏa yêu cầu, khi đó b, a, c theo thứ tự đó lập thành cấp số nhân công bội q. Ta có
a + c = 2 b a = b q ; c = b q 2 ⇒ b q + b q 2 = 2 b ⇔ b = 0 q 2 + q − 2 = 0 .
Nếu b = 0 ⇒ a = b = c = 0 nên a, b, c là cấp số cộng công sai d= 0 (vô lí).
Nếu q 2 + q − 2 = 0 ⇔ q = 1 hoặc q= -2. Nếu q = 1 ⇒ a = b = c (vô lí), do đó q = -2.
Đáp án C
Em có: S = 1. q n − 1 q − 1 = q n − 1 q − 1 .
Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là 1 q .
Gọi S' là tổng mới của cấp số nhân mới.
Em có: S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .
Vậy tổng của cấp số nhân mới là: S q n − 1 .
Gọi công bội của cấp số nhân là q => b=a.q; c=a.q^2
Gọi công sai của cấp số cộng là d => b=a+2d; c=a+8d
Ta có: a.q=a+2d => \(q=\dfrac{a+2d}{a}=1+2\dfrac{d}{a}\)
\(a.q^2=a+8d\Rightarrow q^2=\dfrac{a+8d}{a}=1+8\dfrac{d}{a}\)
Suy ra \(\left(1+2\dfrac{d}{a}\right)^2=1+8\dfrac{d}{a}\Rightarrow\dfrac{d}{a}=1\left(d\ne0\right)\)
=> b=a+2a=3a; c=a+8a=9a
Theo bài ra a+b+c=26 => a+3a+9a=13a=26 => a=2; b=6; c=18
Vậy ba số cần tìm là a=2; b=6; c=18
CSN (un) : un = u1.qn – 1, u1 < 0
a. q > 0 ⇒ qn – 1 > 0 ⇒ u1.qn – 1 < 0 (vì u1 < 0)
⇒ un < 0 với mọi n ∈ N*.
Vậy với q > 0 và u1 < 0 thì các số hạng đều mang dấu âm.
b. q < 0.
+ Nếu n chẵn ⇒ n – 1 lẻ ⇒ qn – 1 < 0
⇒ u1.qn – 1 > 0 (vì u1 < 0).
⇒ un > 0.
+ Nếu n lẻ ⇒ n – 1 chẵn ⇒ qn – 1 > 0
⇒ u1.qn – 1 < 0 (Vì u1 < 0).
⇒ un < 0.
Vậy nếu q < 0, u1 < 0 thì các số hạng thứ chẵn dương và các số hạng thứ lẻ âm.
Chọn B
Do 3 số a, b, c theo thứ tự lập thành cấp số nhân nên ta có :
a c = b 2 ⇒ 1 b 2 = 1 a c