Gải Phương trình
x2 + \(\frac{4x^2}{\left(x+2\right)^2}\) = 5
bạn nào giải đúng và rõ ràng minbk sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ĐKXĐ: }x+2\ne0\Leftrightarrow x\ne-2\)
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=5\Leftrightarrow\frac{x^2\left(x+2\right)^2}{\left(x+2\right)^2}+\frac{4x^2}{\left(x+2\right)^2}=\frac{5\left(x+2\right)^2}{\left(x+2\right)^2}\)
\(\Leftrightarrow x^2\left(x+2\right)^2+4x^2=5\left(x+2\right)^2\)
<=>x2.(x2+4x+4)+4x2=5.(x2+4x+4)
<=>x4+4x3+4x2+4x2=5x2+20x+20
<=>x4+4x3+3x2-20x-20=0
<=>x4-2x3+6x3-12x2+15x2-30x+10x+20
<=>x3.(x-2)+6x2.(x-2)+15x.(x-2)+10.(x-2)=0
<=>(x-2)(x3+6x2+15x+10)=0
<=>(x-2)(x3+x2+5x2+5x+10x+10)=0
<=>(x-2).[x2(x+1)+5x.(x+1)+10.(x+1)]=0
<=>(x-2)(x+1)(x2+5x+10)=0
<=>x=2 hoặc x=-1 (vì x2+5x+10 = (x+5/2)2+15/4 >0)
Vậy S={-1;2}
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{6}{x^2+2}-1+\frac{12}{x^2+8}-1=1-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{6}{x^2+2}-\frac{x^2+2}{x^2+2}+\frac{12}{x^2+8}-\frac{x^2+8}{x^2+8}=\frac{x^2+3}{x^2+3}-\frac{7}{x^2+3}\)
\(\Leftrightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}=\frac{x^2-4}{x^2+3}\)
\(\Leftrightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}+\frac{-x^2+4}{x^2+3}=0\)
\(\Leftrightarrow\left(-x^2+4\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\right)=0\)
\(\Leftrightarrow-x^2+4=0\left(\text{vì : }\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\ne0\right)\)
<=>(2-x)(2+x)=0
<=>x=2 hoặc x=-2
Vậy S={-2;2}
Giải Phương trình sau:
( x2 - 2x +4 )( x2 +3x + 4 ) = 14x2
ai trả lời đúng và rõ ràng mink sẽ tick cho
( x2 - 2x +4 )( x2 +3x + 4 ) = 14x2
Đặt t=x2-2x+4 ta được:
t.(t+5x)=14x2
<=>t2+5tx=14x2
<=>t2+5tx-14x2=0
<=>t2-2tx+7tx-14x2=0
<=>t.(t-2x)+7x.(t-2x)=0
<=>(t-2x)(t+7x)=0
<=>t-2x=0 hoặc t+7x=0
<=>x2-2x+4-2x=0 hoặc x2-2x+4+7x=0
<=>x2-4x+4=0 hoặc x2+5x+4=0
<=>(x-2)2=0 hoặc x2+4x+x+4=0
<=>x-2=0 hoặc x.(x+4)+(x+4)=0
<=>x=2 hoặc (x+4)(x+1)=0
<=>x=2 hoặc x=-4 hoặc x=-1
\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)
\(ĐKXĐ:x\ne\pm2\)
Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)
=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)
\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)
=> \(b=0;a=0\)
Bạn cùng trường :">