: Tìm các tập hợp sau:
a, ƯC(8;12)
b, ƯC(40;60)
c, ƯC(28;39;25)
d, ƯC(36;60;72)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ƯC\left(8,12\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(ƯC\left(12;15;30\right)=\left\{\pm1;\pm3\right\}\)
\(ƯC\left(60;72\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(ƯC\left(24;42\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
a) { 1; 2; 4 }
b) { 1; 3 }
c) { 1; 2; 3; 4; 6; 12 }
d) { 1; 2; 3; 6 }
Ý bn là tìm phần tử à:
a, ƯC(8;12)= ƯCLN (8;12)
Ta có: 8= 23 và 12 = 22.3
\(\Rightarrow\)ƯCLN(8;12)= 22= 4
\(\Rightarrow\)ƯC (8;12)= Ư(4)= {1;2;4}
b, ƯC (12;15;30)= ƯCLN (12;15;30)
Ta có: 12= 22.3
15= 3.5
30= 3.2.5
\(\Rightarrow\)ƯCLN (12;15;30)= 2.3= 6
\(\Rightarrow\)ƯC (12;15;30)= Ư(6)= {1;2;3;6}
c, ƯC (60;72)= ƯCLN (60;72)
Ta có: 60= 22.3.5 và 72= 23.32
\(\Rightarrow\)ƯCLN (60;72)= 22= 4
\(\Rightarrow\)ƯC(60;72)= Ư(4)= {1;2;4}
d, ƯC (24;42)= ƯCLN (24;42)
Ta có: 24= 23.3 và 42= 2.3.7
\(\Rightarrow\)ƯCLN (24;42)= 3
\(\Rightarrow\)ƯC (24;42)= Ư(3)= {1;3}
Chúc bn học tốt
a) Ư(8) = {1;2;4;8}; Ư(12) = {1;2;3;4;6;12} => ƯC(8;12) = {1;2;4;}
b) Ư(24) = {1;2;3;4;6;8;12;24}; Ư(32) = {1;2;4;8;16;32} => ƯC(24; 32) = {1;2;4;8;}
c) Ư(7) = {1;7} ; Ư(10) = {1;2;5;10} => ƯC(7;10) = {1}
d) 8 = 23; 10 = 2.5 => BCNN (8;10) = 23.5 = 40 => BC(8;10) = B(40) = {0;40;80;...}
e) 25 = 52 => BCNN(2;3;25) = 2.3.52 = 150 => BC (2;3;25) = B(150) = {0;150; 300; ...}
2) N = {0;1;2;3;...}; N* = {1;2;3;....} => N giao N* = {1;2;3;...} = N*
a) Ư(8) = {1;2;4;8}; Ư(12) = {1;2;3;4;6;12} => ƯC(8;12) = {1;2;4;}
Vâu b,c,d,e tương tự nha bn
2) N = {0;1;2;3;...}; N* = {1;2;3;....} => N giao N* = {1;2;3;...} = N*
hok tốt
Nhiều vậy thì ai làm xong nhanh cho bạn được
Bạn phải chia ra từng lượt chứ !
BÀI 1
- 8 ∈ ƯC(16, 40) là đúng vì 16 chia hết cho 8 và 40 cũng chia hết cho 8
- 8 ∈ ƯC(32, 28) là sai vì 32 chia hết cho 8 nhưng 28 không chia hết cho 8
BÀI 2
Điền số vào ô trống để được một khẳng định đúng:6 ∈ BC (3,.....).a) Chia 6 cho lần lượt các số tự nhiên từ 1 đến 6.
6 chia hết cho 1; 2; 3; 6 nên Ư(6) = {1; 2; 3; 6}.
Tương tự như vậy Ư(9) = {1; 3; 9}
ƯC(6,9) = Ư(6) ∩ Ư(9) = {1; 3}.
b) Ư(7) = {1,7}
Ư(8) = {1, 2, 4, 8}
ƯC(7,8) = Ư(7) ∩ Ư(8) = {1}.
c) Ư(4) = {1; 2; 4}
Ư(6) = {1; 2; 3; 6}
Ư(8) = {1; 2; 4; 8}
ƯC(4 ,6 ,8) = Ư(4) ∩ Ư(6) ∩ Ư(8) = {1, 2}.
BÀI 3
– Nhân 6 lần lượt với 0; 1; 2; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; … ta được bội của 6 là 0 ; 6 ; 12 ; 18 ; 24 ; 30 ; 36 ; 42 ; 48 ; …
Tập hợp bội của 6 nhỏ hơn 40 là A = {0 ; 6 ; 12 ; 18 ; 24 ; 30 ; 36}.
– Tương tự như trên : tập hợp bội của 9 nhỏ hơn 40 là : B = {0 ; 9 ; 18 ; 27 ; 36}.
– M = A ∩ B.
a) Các phần tử của tập hợp M là các phần tử chung của hai tập hợp A và B. Đó là: 0; 18; 36.
b) Mỗi phần tử của M đều là phần tử của A và B nên M ⊂ A; M ⊂ B.
Bài 2
a) ta gọi các số thuộc ƯC(16;24) là A ta có
\(A\in\left\{1;2;4;8\right\}\)
b)ta gọi các số thuộc ƯC(60;90) là B ta có
\(B\in\left\{1;2;3;5;6;10;15;30\right\}\)
Bài 3
a) gọi các số thuộc BC (13;15) là A
\(A\in\left\{195;390;585;780;...\right\}\)
b)gọi các số thuộc BC (10;12,15) là B
\(B\in\left\{60;120;180;240;300;...\right\}\)
bài 4
a)10=2.5
28=22.7
=> ƯCLN(10;28)=22.5.7=140
b) ƯCLN =16 vì 80 chia hết cho 16 , 176 chia hết cho 16
a)bài 5
16= 24
24=23.3
BCNN = 24.3=48
b)8=23
10=2.5
20=22.5
BCNN(8;10;20)=23.5=40
c)8=23
9=32
11=11
BCNN(8;9;11)=23.32.11
a) A = {1; 2; 3; 6}
Nhận xét: Ta thấy tập hợp ƯC (18, 30) = {1; 2; 3; 6} nên tập hợp ƯC (18, 30) giống với tập hợp A.
b)
i. 24 = 23.3
30 = 2.3.5
=> ƯCLN(24, 30) = 2.3= 6
Vậy: ƯC(24, 30) = Ư(6) = {1; 2; 3; 6}.
ii. 42 = 2.3.7
98 = 2.72
=> ƯCLN(42, 98) = 2.7 = 14.
iii. \(180 = 2^2.3^2.5\)
\(234 = 2.3^2. 13\)
=> ƯCLN(180,234) = \(2. 3^2 = 18\)
Ta có:
72 = 2³.3²
84 = 2².3.7
120 = 2³.3.5
ƯCLN(72; 84; 120) = 2².3 = 12
ƯC(72; 84; -120) = Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
ƯC ( 8 , 12 ) = { ± 1 ; ± 2 ; ± 4 }
ƯC ( 12 ; 15 ; 30 ) = { ± 1 ; ± 3 }
Ư C ( 60 ; 72 ) = { ± 1 ; ± 2 ; ± 3 ; ± 4 ; ± 6 ; ± 12 }
Ư C ( 24 ; 42 ) = { ± 1 ; ± 2 ; ± 3 ; ± 6 }